期刊文献+

基于高斯金字塔与差分法的多目标检测和跟踪算法 被引量:9

Multiple Objects Detection and Tracking Based on Background Subtraction and Gaussian Pyramid
下载PDF
导出
摘要 针对复杂背景下的多目标检测和跟踪问题,提出了将背景差分目标检测算法与高斯金字塔图像重采样相结合的运动目标检测算法.该算法采用高斯金字塔法对图像进行重采样,建立背景模型,使用背景差分法获得前景区域,并对前景区域进行阴影检测、去除,从而检测出完整目标.融入了高斯模型关于背景更新的算法,克服了由于背景突然改变而造成的误检测.在目标阈值的确定过程中,采用动态阈值确定法,以提高目标检测的正确性.同时将目标的颜色特征和运动矢量引入到多目标跟踪算法中,提高目标跟踪的准确性.实验结果表明,该算法对于场景中存在目标频繁出现、消失、交叉运动和遮挡等情形均有较好的检测与跟踪效果. For the multi--target tracking problems with complex background, a method combing background subtraction with Guassian pyramid on objects detection is presented. The method detects the whole object with taking sample on the objects with Guassian pyramid, building background model, extracting foreground areas with background subtraction, and eliminating the shadow on the foreground. The detection that integrates Gauss model concerning background renewal of calculation, overcomes the error resulted from the sudden change of background. A dynamic threshold concept is proposed to enhance detection effect and thus increase the possibility of implementation. Color model and motion feature is leaded in the method, so the veracity and security is enhanced. The experi- ment results have showed that the proposed algorithm is robust to the problems of the appearance and disappearance of targets, the cross movement of targets and occlusiorL
作者 姜靓 詹永照
出处 《微电子学与计算机》 CSCD 北大核心 2011年第11期129-132,136,共5页 Microelectronics & Computer
基金 江苏省自然科学基金项目(BK2009199) 国家自然科学基金项目(60673190) 江苏省普通高校研究生科研创新计划项目(1221170010)
关键词 多目标检测和跟踪 背景差分 高斯金字塔 multiple objects detection and tracking background subtraction Guassian pyramid
  • 相关文献

参考文献10

二级参考文献35

共引文献38

同被引文献85

  • 1李臻,魏志强,纪筱鹏,殷波,聂婕,倪欣.基于自适应背景模型的行人检测方法[J].系统仿真学报,2009,21(S1):61-64. 被引量:7
  • 2王红梅,张科,李言俊.图像匹配研究进展[J].计算机工程与应用,2004,40(19):42-44. 被引量:107
  • 3葛广英.智能交通系统中的视频监控技术[J].电视技术,2006,30(4):89-92. 被引量:4
  • 4Cheung S C S, Kamath C. Robust background subtraction with foreground validation for urban traffic video[J]. Eurasip Journal on Applied Signal Processing, 2005(14): 2330-2340.
  • 5Carranza J, Christian M, Magnor M A, et al. Free-viewpoint video of human actors[C]//ACM Transactions on Graphics. San Diego, USA: Association for Computing Machinery, 2003: 569-577.
  • 6Dessauer M P, Dua S. Optical flow object detection, motion estimation, and tracking on moving vehicles using wavelet decompositions[C]// Proceedings of SPIE-The International Society for Optical Engineering. Bellingham, USA: SPIE, 2010: 76941J-1-76941J-10.
  • 7Ha J E, Lee W H. Foreground objects detection using multiple difference images[J]. Optical Engineering, 2010, 49(4): 047201-1-047201-5.
  • 8Jodoin P M, Mignotte M, Konrad J. Statistical background subtraction using spatial cues[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2007, 17(12): 1758-1763.
  • 9Chiu C C, Ku M Y, Liang L W. A robust object segmentationsystem using a probability-based background extraction algorithm[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2010, 20(4): 518-528.
  • 10Stauffer C, Grimson W E L. Adaptive background mixture models for real-time tracking[C]//Proceedings of the Computer Society Conference on Computer Vision and Pattern Recognition, 1999. Los Alamitos: IEEE Comput Soc, 1999: 246-252.

引证文献9

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部