期刊文献+

高速Booth编码模(2^n—1)乘法器的设计 被引量:2

Novel Modified Booth Modulo (2^n--1) Multipliers
下载PDF
导出
摘要 在余数系统中(2n-1)是最普遍应用的模,提出了一种新的booth编码结构,并基于提出的booth编码结构,提出了一种高速模(2n-1)乘法器.该乘法器采用CSA或者Wallace Tree结构可以进一步提高运算速度.此乘法器在一个时钟周期内可以完成所需运算,简单高效. (2^n--1) is one of the most commonly used moduli in Residue Number Systems. In the paper we propose a novel Booth encoding architecture. Based on the proposed booth encoding architecture, we can design high speed and high-efficient modulo (2^n- 1) multipliers, which are the fastest among all known modulo (2^n- 1) multipliers.
出处 《微电子学与计算机》 CSCD 北大核心 2011年第11期191-193,共3页 Microelectronics & Computer
关键词 乘法器 Booth编码算法Wallace树形结构 multiplier Booth coder optimal Wallace tree
  • 相关文献

参考文献8

  • 1Soderstrand M A, Taylor F J, Jenkins w k, et al. Resi- due number system arithmetic: modern applications indigital Signal Processing[M]. piscatawing, USA: IEEE Press, 1986.
  • 2Paliouras V, Stouraitis T. Novel high--radix residue number system multipliers and adders[C]// Proc IEEE Int'l Symp Circuits and Systems. orlando, USA.. IEEE, 1999 : 451 --454.
  • 3Wang W, Swamy M, Ahmad M, et al. A high--speed residue-- to-- binary converter for three-- moduli (2k, 2k --1,2k-1-1) RNS and a scheme for Its VLSI imple- mentation[J]. IEEE Trans Circuits and Systems II, 2000,47(12) .. 1576-1581.
  • 4Wang Y,Song X, A boulhamid M, et al. Adder based residue to binary number converters {or (2n--1, 2n, 2n q- 1) [J]. IEEE Trans Signal Processing, 2002,50 (7) : 1772-1779.
  • 5Skavantzos A, Rao P B. New multipliers modulo 2n--1 [J]. IEEE Trans Computers, 1992,41(8) :957--961.
  • 6Wang Z, Jullien G A, Miller W C. An algorithm for multiplication modulo (2n-l) [C]//Proc 39th Midwest Symp on Circuits and Systems. Ames, USA.. IEEE, 1997.. 1301-1304.
  • 7Zimmerman R. Efficient VLSI implementation of modu- lo( 2n --b 1) addition and multiplication[C]// Proc 14th IEEE Symp on Computer Arithmetic. Adelaide, SA, Aostralia: IEEE, 1999:158-167.
  • 8] Efstathiou C, Vergos H T, Nikolos D. Modified booth modulo 2n-- 1 multipliers[J]. IEEE Trans Computers, 2004,53(3) :370--374.

同被引文献18

  • 1周婉婷,李磊.基4BOOTH编码的高速32×32乘法器的设计与实现[J].电子科技大学学报,2008,37(S1):106-108. 被引量:5
  • 2汤晓慧,杨军,吴艳,吴建辉.基于Booth算法的32×32乘法器IP核设计[J].电子器件,2005,28(1):218-220. 被引量:4
  • 3王定,余宁梅,张玉伦,宋连国.改进型booth华莱士树的低功耗、高速并行乘法器的设计[J].电子器件,2007,30(1):252-255. 被引量:5
  • 4Meyer-BaeseU.数字信号处理的FPGA实现[M].刘凌,译.北京:清华大学出版社,2011.
  • 5Deepal Chandel, Gagan Kumawat, Pranay Lahoty. Booth Multiplier: Ease of Multiplication [ J ]. International Journal of Emerging Technology and Advanced Engineering,2013,3 (3) :326-329.
  • 6Dina Younes, Pavel Steffan. Novel Modulo 2" + 1 Subtractor and Mulitiplier[ C]//The Sixth International Conference on Systems, 2011:36-38.
  • 7Reto Zimmermann. Efficient VLSI Implementation of Modulo 2"+ 1 Addition and Multiplication [ C ]//Proceedings of the 14th Symposium on Computer Arithmetic, 1999:51-54.
  • 8Yi-Jung C,Dyi-Rong D, Yunghsiang S H. Improved Modulo 2n + 1 Multiplier for IDEA [ J ]. Journal of Information Science and Engineering ,2007,23:907-919.
  • 9Soojin Kim, Kyeongsoon Cho. Design of High-Speed Modified Booth Multipliers Operation at GHz "Ranges [ R ]. World Academy of Science,Engineering and Technology,2010:37-38.
  • 10Marc Hunger, Daniel Marienfeld. New Self-Checking Booth Multiplier [ J ]. Math, Comput Sci,2008,18 ( 3 ) :319-328.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部