期刊文献+

不同频率间歇低氧下大鼠肝脏氧化应激损伤及Tempol的干预作用 被引量:2

A study of rat liver oxidative stress injury with different frequencies intermittent hypoxia and the effect of Tempoi
原文传递
导出
摘要 目的探讨不同频率间歇低氧(IH)对大鼠肝脏氧化应激损伤差异和Tempol的干预作用及可能机制。方法应用慢性间歇低氧(CIH)大鼠模型,模拟OSAS周期性间歇低氧/再氧和病理生理过程。56只雄性Wistar大鼠随机分为不同频率IH组(IH1,IH2,IH3,IH4,频率依次为10、20、30、40次/h),30T组(30次/h低氧Tempol干预组),30N组(30次/h低氧生理盐水对照组),以及常氧对照组(NC组),共7组,每组8只,IH各组最低氧浓度均为5%。暴露6周后,测定大鼠肝脏丙二醛(MDA)、超氧化物歧化酶(SOD)、总抗氧化能力(T-AOC)的水平。结果①4个不同频率IH组MDA水平均高于NC组(P值均〈0.05),SOD、TAOC活性均低于NC组(P值均〈0.05),且随着IH频率的升高,MDA水平逐渐升高,SOD、T—AOC活性逐渐下降,除IH3组和IH4组MDA、SOD、T—AOC水平差异均无统计学意义外(P值均〉0.05),其余IH组两两比较,以上指标差异均有统计学意义(P值均〈0.05)。②与IH3组、30N组比较,30T组MDA水平下降(P〈0.05),SOD、T—AOC活性升高(P值均〈0.05),且与NC组比较差异无统计学意义(P值均〉0.05)。③不同频率IH组MDA水平与SOD、T-AOC活性均呈负相关(r分别为-0.721,-0.653,P值均=0.000)。结论不同频率CIH对大鼠肝脏氧化应激损伤的程度不同,但并不是频率越高,损伤越重;Tempol能预防CIH大鼠肝脏氧化应激损伤的发生。 Objective To study the effect of different frequencies intermittent hypoxia on malondialdehyde (MDA), superoxide dismutase (SOD) and total antioxidant capacity (T-AOC)of rat liver and to investigate the effect of Tempol. Methods To establish a chronic intermittent hypoxia (CIH) animal model in rats,in order to mimic the intermittent hypoxia/reoxygenation (IH/ROX) of obstructive sleep apnea syndrome in humans. 56 healthy male Wistar rats were randomly assigned to seven groups:4 different IH frequencies groups (IH1:10 times/h, IH2:20 times/h, IH3:30 times/h,IH4:40 times/h with 5% O2),the IH3+Tempol group (30T group),the IH3+normal saline control group (30N group) and normoxia control group (NC group) ,each group of eight rats. After the experiment,we measured the levels of MDA,SOD and T AOC in rat liver homogenate. Results The level of MDA in 4 different IH frequencies groups was higher than in NC group (all P 〈0.05) ,the activity of SOD,T AOC were lower than in NC group (all P d0.05). And there was a trend as the IH frequency increased,the level of MDA was gradually increased, the activity 9f SOI3 and T-AOC were gradually decreased. The differences of MDA, SOD,T-AOC level were statistical significant between each two different IH frequencies groups (all P 〈0.05) ,except the differences between IH3 group and IH4 group (all P 〉0.05). Compared with IH3 group,30N group,the level of MDA in 30T group was decreased ( P -(0.05) ,the activity of SOD,T-AOC were increased (all P 〈0.05),and the levels of MDA, SOD,T-AOC in 30T group were not significant with in NC group (all P 〉0.05). The level of MDA in 4 different IH frequencies groups was negative correlation with the activity of SOD, T-AOC ( r were -0. 721, -0. 653 respectively, all P = 0. 000). Conclusions Different CIH frequencies had different degrees of injury of oxidative stress on rat liver,but the relationship between the degree of injury on liver and the CIH frequencies was not entirely a linear. Tempol could prevent the oxidative stress injury on the rat liver of CIH.
出处 《国际呼吸杂志》 2011年第20期1546-1549,共4页 International Journal of Respiration
基金 国家自然科学基金资助项目(50770954)
关键词 间歇低氧 氧化应激 阻塞性睡眠呼吸暂停综合征 TEMPOL Intermittent hypoxia Oxidative stress Obstructive sleep apnea syndrome Tempol
  • 相关文献

参考文献10

  • 1Li J,Savransky V, Nanayakkara A, et al. Hyperlipidemia andlipid peroxidation are dependent on the severity of chronic intermittent hypixia. J Appl Physiol, 2007,102 : 557-563.
  • 2Farrell GC, Larter CZ. Nonalcoholic fatty liver disease.- from steatosis to cirrhosis. Hepatology,2006,43(2 Suppl 1):$99- Sl12.
  • 3谷川久一,秦丽娟.氧化应激与肝病[J].日本医学介绍,2006,27(12):560-562. 被引量:17
  • 4Ryan S,Taylor CT, McNicholas WT. Selective inflammatory pathways by intermittent hypoxia in obstructive sleep apnea syndrome. Circulation, 2005, 112: 2660 2667.
  • 5Winnicki M, Shamsuzzaman A, Lanfranchi P, et al. Erythropoietin and sleep apnea. Am J Hypertans, 2004,17 : 783-786.
  • 6冯靖,陈宝元,郭美南,曹洁,赵海燕,梁东春,左爱军.内皮细胞在不同间歇缺氧方式时核因子κB和细胞间黏附分子1的变化[J].中华结核和呼吸杂志,2007,30(3):202-206. 被引量:10
  • 7Kato N, Yanaka K, Hyodo K, et al. Stable nitroxide tempol ameliorates brain injury by inhibiting lipid peroxidation in a rat model of transient focal cerebral ischemia. Brain Res, 2003,979:188-193.
  • 8Rak R, Chao DL, Pluta RM, et al. Neuroproteetion by the stable nirtoxide Tempol during reperfusion in a rat model of transient focal ischemia. J Neurosurg, 2000,92 :646-651.
  • 9Chatterjee PK, Cuzzocrea S, Brown PA, et al. Tempol, a membrane-permeable Radical scavenger, reduces oxidant stress-mediated renal dys{unction and injury in the rat. Kidney Int,2000,58:658 673.
  • 10Sepodes B, Maio R, Pinto R, et al. Tempol, an intraceUular free radical scavenger, reduces liver injury in hepatic ischemia-reperfusion in the rat. Transplant Proc, 2004, 36: 849-853.

二级参考文献11

  • 1Shamsuzzaman AS, C, ersh BJ, Somers VK. Obstructive sleep apnea: implications for cardiac and vascular disease. JAMA,2003,290: 1906-1914.
  • 2Fletcher EC. Sympathetic over activity in the etiology of hypertension of obstructive sleep apnea. Sleep, 2003,26 : 15-19.
  • 3Yuan G,Adhikary G, McConnick AA, et al. Role of oxidative stress in intennittent hypoxia-induced immediate early gene activation in rat PC12 cells. J Physiol,2004,557 (Pt 3):773-783.
  • 4Kumar GK, Kim DK, Lee MS, et al. Activation of tyrosine hydroxylase by intermittent hypoxia: involvement of serine phosphorylation. J Appl Physiol, 2003,95:536-544.
  • 5Byan S, Taylor CT, McNicholas WT. Selective activation of inflammatory pathways by intennittent hypoxia in obstructive sleep apnea syndrome. Circulation, 2005,112:2660-2667.
  • 6Ohga E, Tomita T, Wada H, et al. Effects of obstructive sleep apnea on circulating ICAM-1, IL-8, and MCP-1. J Appl Physiol,2003,94 : 179-184.
  • 7Ohga E, Nagase T, Tomita T, et al. Increased levels of circulating ICAM-1, VCAM-1, and L-seleetin in obstructive sleep apnea syndrome. J Appl Physiol, 1999,87:10-14.
  • 8El-Solh AA,Mador MJ, Sikka P, et al. Adhesion molecules in patients with coronary artery disease and moderate-to-severe obstructive sleep apnea. Chest, 2002,121:1541-1547.
  • 9Li C, Jackson RM. Reactive species mechanisms of cellular hypoxia-reoxygenation injury. Am J Physiol Cell Physiol, 2002,282: C227-C241.
  • 10Yuan G,Nanduri J, Bhasker CR, et al. Ca^2+/calmodubn kinasedependent activation of hypoxia inducible factor 1 transcriptional activity in cells subjected to intermittent hypoxia. J Biol Chem,2005,280:4321-4328.

共引文献25

同被引文献21

  • 1中华医学会肝脏病学分会脂肪肝和酒精性肝病学组.非酒精性脂肪性肝病诊疗指南[J].中国肝脏病杂志(电子版),2010,2(4):43-48. 被引量:470
  • 2陆甘,徐卓文,刘剑南,张玉林,杨志健,张希龙,殷凯生.阻塞性睡眠呼吸暂停低通气综合征与冠心病的相关性[J].中华结核和呼吸杂志,2007,30(3):178-181. 被引量:9
  • 3Susheel P,Patil,Hartmut Schneider,et al. Adult obstructive sleep apne-a: pathophysiology and diagnosis[J]. CHEST,2007,(7) :325.
  • 4Kheirandish - Gozal L, Sans Capdevila 0, KHeirandish E, et al. Ob-structive sleep apnea and nonalcoholic fatty liver disease : causal associ-ation or just a coincidence[ J]. Gastroenterology ,2008,134:2178.
  • 5Stmlki YJ,Jain V,Park AM,et al. Oxidative stress and oxidant signa-ling in obstruetive sleep apnea and associated cardiovascutlar disease[J].Free Radic Biol Med,2006,40:1683.
  • 6Yamauchi M,Kimurs H. Oxidative stress in obstructive sleep apnea:Pu-tative pathways to the cardiovascular complieations[ J]. Antioxid Redoxsignal,2008,10 :755.
  • 7Angulo P,Lindor KD. Insulin resistance and mitochondrial abnormali-ties in NASH:a cool look into a burning issue[ J]. Gastroenterology,2001,120:1281.
  • 8Lancaster JR Jr,Laster SM, Gooding LR. Inhibition of target cell mito-chondrial electron transfer by tumor necrosis factor [ J]. FEBS Lett,1989,248:169.
  • 9谷川久一.氧化应激与肝病[A].日本医学介绍[M].2005,27,12,560-561.
  • 10Anna Svatikova, Robert Wolk, et al. Oxidative stress in obstructivesleep apnoea[ J]. European Heart Journal,2005,26:2435.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部