期刊文献+

稠密栅元不同子通道内湍流流动的RANS和URANS模拟 被引量:6

RANS and URANS Simulations of Turbulent Flow Inside Different Subchannels in Tight Lattice Bundle
下载PDF
导出
摘要 本工作采用RANS和非稳态雷诺平均纳维斯托克斯模拟(URANS)方法对稠密栅元内典型子通道——中心通道和壁面通道内的湍流流动进行CFD模拟。研究分析了稠密栅元子通道内的不同周向角度的主流速度、壁面剪应力、湍动能等参数。将模拟计算结果和实验测量结果进行对比,结果表明:RANS模拟在采用各向异性的湍流模型的情况下能较好地模拟P/D较大的稠密栅元通道,但对于P/D较小(P/D<1.1)的稠密栅元通道,CFD结果和实验数据存在较大差距。相比之下,URANS方法可模拟紧密栅元子通道间隙区的大尺度、准周期的流动振动,从而和实验数据拟合良好。推荐采用雷诺应力湍流模型(SSG,ORS)进行RANS模拟,而采用SAS湍流模型进行URANS模拟。 Both steady and unsteady Reynolds averaged Navier stokes(URANS) methods were applied to the prediction of turbulent flow inside different subchannels in tight lattice bundle.Two typical configurations of subchannels(i.e.,wall subchannel and center subchannel) were chosen to be investigated.The validity of the method was assessed by comparing computational results of axial velocity,wall shear stress and turbulent intensity distributions inside various bundle configurations with the experimental data.The results show that RANS simulations with anisotropic turbulent model produce excellent agreement with experiment,whereas it fails to predict the flow behavior accurately in the case of tightly packed geometries(P/D〈1.1).On the other hand,the URANS simulations are in good agreement with the results in tightly packed geometries due to reproducing the flow oscillation in the gap region.Reynolds stress turbulence model(SSG,ORS) are proposed for RANS and SAS turbulence model for URANS simulation.
出处 《原子能科学技术》 EI CAS CSCD 北大核心 2011年第10期1191-1197,共7页 Atomic Energy Science and Technology
基金 国家自然科学基金资助项目(50806044) 国家重点基础研究发展计划资助项目(2007CB209804)
关键词 非稳态雷诺平均纳维斯托克斯模拟 湍流模型 流动振动 unsteady Reynolds averaged Navier stokes simulation turbulence model flow oscillation
  • 相关文献

参考文献18

  • 1OLDEKOP W, BERGER H D, ZEGGEL W. General features of advanced pressurized water reactors with improved fuel utilization[J].Nu- clear Technology, 1982, 59:212-227.
  • 2UCHIKAWA S, OKUBO T, KUGO T, et al. Investigations on innovative water reactor for flexible fuel cycle (LFWR) [C] // Proceedings of GLOBAL. Tsukuba, Japan..[s. n. ], 2005.
  • 3CHENG X, LIU X J, YANG Y H. A mixed core for supereritical water-cooled reactors [J]. Nuclear Engineering and Technology, 2008, 40 (1) : 1-10.
  • 4KRAUSS T, MEYER T. Experimental investi- gation of turbulent transport of momentum and energy in a heated rod bundle[J]. Nuclear Engi- neering and Design, 1998, 180: 185-206.
  • 5TRUPP A C, AZAD R S. The structure of tur- bulent flow in triangular array rod bundles[J]. Nuclear Engineering and Design, 1975, 32: 47- 84.
  • 6TRIPPE G, WEINBERG D. Non-isotropic eddy viscosities in turbulent flow through rod bundles [M] // Turbulent Forced Convection in Channels and Bundles.. Vol. 1. KAKAC S, SPALDING D B. Washington: Hemisphere Publishing Corpo- ration. 1979. 505.
  • 7SEALE W J. Turbulent diffusion of heat be- tween connected flow passages[J]. Nuclear Engi- neering and Design, 1979, 54: 183-195.
  • 8REHME K. Simple method of predicting friction factors of turbulent flow in non-circular channels [J].International Journal of Heat and Mass Transfer, 1973, 16: 933-950.
  • 9REHME K. The structure of turbulent flow through rod bundles [J]. Nuclear Engineering and Design, 1987, 99: 141-154.
  • 10MEYER L, REHME K. Large-scale turbulence phenomena in compound rectangular channels [J]. Experimental Thermal and Fluid Science, 1994, 8: 286-304.

同被引文献30

  • 1王莹杰,王明军,鞠浩然,张大林,田文喜,秋穗正,苏光辉.先进压水堆带定位格架5×5燃料棒束通道热工水力特性CFD数值模拟[J].核动力工程,2020(S01):6-11. 被引量:8
  • 2谢峰,曹念,郎雪梅,熊万玉,宫厚军.紧密排列燃料组件交混系数试验研究[J].核动力工程,2012,33(S1):50-53. 被引量:4
  • 3Speziale C G, Sarkar S, Gatski T B. Modeling the Pres- sure-Strain Correlation of Turbulence: An Invariant Dy-namical Systems Approach[J]. Journal of Fluid Mechanics, 1991,227 : 245-272.
  • 4Rotta J C. Statistische Theorie Nichthomogener Turbulenz [J]. Z. Phys, 1951,129(6):547-572.
  • 5Launder B E, Reece G, Rodi W. Progress in the Develop- ment of a Reynolds Stress Turbulence Closure[J]. Journal of Fluid Mechanics, 1975,68 : 537-566.
  • 6Lumley J L. Turbulence Modeling[J]. Journal of Applied Mechanics, 1983,50(4b) : 1097-1104.
  • 7Abid R, Morrison J H, Gatski T B, et al. Prediction of Aerodynamic Flows with a New Explicit Algebraic Stress Model[J]. AIAA Journal, 1996,34(12) : 2632-2635.
  • 8Jakirlic S, Eisfeld B, Jester-Ztirker R, et al. Near-Wall, Reynolds-Stress Model Calculations of Transonic Flow Configurations Relevant to Aircraft Aerodynamics[J]. Inter- national Journal of Heat and Fluid Flow, 2007, 28(4): 602-615.
  • 9Settles G S, Vas I E, Bogdonoff S M. Details of a Shock-Separated Turbulent Boundary Layer at a Compres- sion Corner[J]. AIAA Journal, 1976,14(12): 1709-1715.
  • 10Settles G S, Fitzpatrick T J, Bogdonoff S M. Detailed Study of Attached and Separated Compression Corner Flowfields in High Reynolds Number Supersonic Flow[J]. AIAA Jour- nal, 1979,17(6) : 579-585.

引证文献6

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部