期刊文献+

在线构造Toeplitz矩阵对相干信号DOA估计

Coherent Signal DOA Estimation Based on Online Toeplitz Matrix Construction
下载PDF
导出
摘要 针对相干信号源的DOA估计问题,提出了一种基于最大特征矢量在线构造Toeplitz矩阵解相干的方法。通过接收到的数据,实时构造基于最大特征矢量的Toeplitz矩阵来估计相干源的DOA,它无需估计数据的协方差,计算量小,不损失阵列孔径。相比常规的解相干算法,在小快拍和低信噪比情况下,具有更好的估计性能,理论分析和仿真结果验证了该方法的有效性。 In this paper,a toeplitz matrix construction method on line using the eigenvector corresponding to the maximum eigenvalue is proposed for the DOA estimate of coherent signals.This method utilizes the received data to construct the toeplitz matrix based on the largest eigenvector in real time.It does not need to estimate the sample covariance matrix and don't loss the array aperture.Compared the conventional decorrelation methods,it has the better estimation performance,especially at the few snaps and the low SNR scenarios.Theoretical analyses and simulation results both show that the present method is effective.
出处 《火力与指挥控制》 CSCD 北大核心 2011年第10期111-114,共4页 Fire Control & Command Control
关键词 TOEPLITZ矩阵 最大特征矢量 在线 解相干 toeplitz matrix largest eigenvetor online decorrelation
  • 相关文献

参考文献5

  • 1Shen T J, Wax M, Kailath T. On Spatial Smoothing for Estimation of Coherent Signals[C]// IEEE on ASSP, 1985.
  • 2Gao S W,Bao Z. Data-based Matrix Decomposition Technique for High Resolution Array Processing of Coherent Signals[J]. Electronics Letters, 1987, 23 (12):643-645.
  • 3Wang B H, Wang Y L, Chen H. Weighted Spatial Smoothing for Direction of Arrival Estimation of Coherent Signals [C]]//Proceedings of IEEE Antennas and Propagation Society International Symposium San Antonio, Texas, USA: IEEE, APSIS16-21,2002.
  • 4曹向海,刘宏伟,吴顺君.基于在线Music算法的DOA估计[J].电子与信息学报,2008,30(11):2658-2661. 被引量:5
  • 5Zhang Y, Weng J. Convergence Analysis of Complementary Candid Incremental Principal Component Analysis [R]. Technical Report MSUCSE-01-23, Dept. of Computer Science and Eng. , Michigan State Univ. , East Lansing,2001.

二级参考文献10

  • 1黄磊,吴顺君,冯大政,张林让.一种低复杂度的ESPRIT方法[J].西安电子科技大学学报,2005,32(4):570-573. 被引量:3
  • 2包志强,吴顺君,张林让.一种信源个数与波达方向联合估计的新算法[J].电子学报,2006,34(12):2170-2174. 被引量:9
  • 3Schmidt R O. Multiple emitter location and signal parameter estimation[J]. IEEE Trans. on AP, 1986, 34(3): 276-286.
  • 4Ray R and Kailath T. ESPRIT-estimation of signal parameters via rotational invariance techniques [J]. IEEE Trans. on ASSP, 1989, 37(7): 948-955.
  • 5Xu G and Kailath T. Fast subspace decomposition [J]. IEEE Trans. on SP, 1994, 42(3): 539-551.
  • 6Gershman A. B. Direction of arrival estimation using generalized minimum norm approach[J]. Electronics Letters, 1991, 27(16): 1485-1486.
  • 7Huang L, Wu S, and Feng D et al.. Low complexity method for signal subspace fitting [J]. Electronics Letters, 2004, 40(14): 847-848.
  • 8Goldstein J S, Reed I S, and Scharf L L. A multistage representation of the wiener filter based on orthogonal projections [J]. IEEE Trans. on IT, 1998, 44(7): 2943-2959.
  • 9Weng J Y, Zhang Y L, and Hwang W S. Candid covariance-free incremental principal component analysis [J]. IEEE Trans. on PA, 2003, 25(8): 1034-1040.
  • 10Zhang Y and Weng J. Convergence analysis of complementary candid incremental principal component analysis. Technical Report MSU-CSE-01-23, Dept. of Computer Science and Eng., Michigan State Univ., East Lansing, Aug. 2001.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部