期刊文献+

基于特征级融合和支持向量机的飞机识别 被引量:9

Aircraft recognition scheme based on feature fusion and support vector machine
原文传递
导出
摘要 提出一种新的基于组合不变量的飞机识别方法。对不同飞机机型图像,提取Hu矩、仿射矩和归一化傅里叶描述子(NFD)3类不变量进行特征级融合。针对组合不变量取值范围较大问题,提出采用4种归一化方法,结合支持向量机(SVM)以提高飞机识别系统的分类性能。仿真实验表明,提取飞机的组合不变量特征,采用传统神经网络或SVM构建分类器,分类性能均优于单一类别不变量的同类分类器,且SVM的分类性能要优于传统神经网络。同时,当组合不变量要与智能型分类器结合时,采用特定的归一化方法才能取得较好的识别率。 Abstract:A new combination invariants method is proposed for aircraft recognition. For all kinds of air craft types, Hu moments, affine moments and normalized Fourier descriptors are extracted and com- bined. As the above invariants are too dispersed,four kinds of normalized methods are studied and com- bined with support vector machine (SVM) to improve aircraft classification performance. Simulation re sults show that the classification performance is better by the combination invariants which are combined with support vector machine classifier or neuron network than that by any single kind of invariants which are combined with corresponding classifiers, and the classification performance is better by support vector machine classifier than that by traditional neuron network classifier. Moreover, when combination invari- ants are sent to intelligent classifiers, a special normalization method can improve the classification performance.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2011年第11期1710-1713,共4页 Journal of Optoelectronics·Laser
基金 国家高技术研究发展计划资助项目(2010AA7080302)
关键词 组合不变量 归一化 支持向量机(SVM) 神经网络 combination invariants normalization support vector machine (SVM) neuron network
  • 相关文献

参考文献6

二级参考文献67

共引文献85

同被引文献85

  • 1杨健,杨静宇,叶晖.Fisher线性鉴别分析的理论研究及其应用[J].自动化学报,2003,29(4):481-493. 被引量:97
  • 2杨益民,冯敏,毛振伟,王昌燧,凌雪,龚明,孙新民,郭木森.汝瓷及其仿制品瓷釉的显微结构分析和“汝钧不分”难题的破解[J].分析测试学报,2005,24(6):16-20. 被引量:7
  • 3何洪英,姚建刚,蒋正龙,李伟伟.利用红外图像特征和径向基概率神经网络识别不同湿度条件下绝缘子的污秽等级[J].中国电机工程学报,2006,26(8):117-123. 被引量:58
  • 4YAO Yong-fang, JING Xiao-yuan, WONG Han-san. Face and palmprint feature level fusion for single sample bio- metrics recognition[J]. Neurocomputing, 2007,70 ( 7-9 ) : 1582-1586.
  • 5SHEN Lin-lin, BAI Li, JI Zhen. Hand-based biometrics fu- sing palmprint and finger-knuckle-print[A]. International workshop on emerging techniques and challenges for hand-based biometrics[C]. 2010,1-4.
  • 6ZHANG Yan-qiang, SUN Dong-mei, QIU Zheng-ding. Hand- based feature level fusion for single sample biometrics recognition[A]. International workshop On emerging tech- niques and challenges for hand-based biometrics[C]. 2010,1-4.
  • 7ZHANG Yan-qiang, SUN Dong-mei, QIU Zheng-ding. Hand- based single sample biometrics recognition[A]. Neural Computing & Applications[C]. 2011,1-10.
  • 8GUO Jin-yu, LIU Yu-qin, YUAN Wei-qi. Palmprint recogni-tion using local information from a single image per per- son[J]. Journal of Computational Information Systems, 2012,8(8) :3199-3206.
  • 9Fujiwara Koichi, Kano Manabu, Hasebe Shinji. Develop- ment of correlation-based pattern recognition algorithm and adaptive soft-sensor design[J]. Control Engineering Practice,2012,20(4) :371-378.
  • 10Fujiwara Koichi, Kano Manabu, Hasebe Shinji. Soft-sensor development using correlation-based just-in-time model- ing[J]. AIChE Journal, 2009,55 (7) : 1754-1765.

引证文献9

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部