期刊文献+

PLGA/PCL/nHA生物支架复合兔BMSCs体外培养的实验研究 被引量:1

Biocompatibility and Osteogenesis of Biomimetic PLGA/PCL/nHA Composite Scaffolds for Bone Tissue Engineering in vitro
下载PDF
导出
摘要 目的:研究新型复合支架聚乳酸-聚乙醇酸/聚己内酯/纳米羟基磷灰石(PLGA/PCL/nHA)的生物相容性,探讨其作为细胞培养材料和骨组织工程支架的可行性。方法:将兔骨髓基质细胞(bone marrow stromal cells,BMSCs)接种于PLGA/PCL/nHA复合支架上,体外共同培养后,MTT法检测BMSCs增殖活性,电镜下观察PLGA/PCL/nHA复合支架材料表面和孔隙内细胞附着情况。结果:BMSCs在PLGA/PCL/nHA复合支架材料上生长良好。PLGA/PCL/nHA材料表面和孔隙内均有细胞附着,细胞已伸展成梭形或多角形,伸出伪足黏附于材料上。结论:新型PLGA/PCL/nHA复合支架材料生物相容性好,是一种良好的组织工程支架材料,可作为种子细胞的载体应用于骨组织工程中。 Objective: Myriad scaffolding materials and compositions have been and are still being tested for the regeneration of each very specific hard or soft tissue.The objective of this study was to examine a novel composite poly(lactic-co-glycolic acid) / poly(e—caprolactone) / nano-carbonate hydroxyapatite(PLGA/PCL/nHA) on the initial behavior of bone marrow stromal cells(BMSCs) and evaluate the proliferation and differentiation of BMSCs grown on composite scaffold in vitro.Methods: BMSCs cells were cultured on PLGA/PCL/nHA in vitro,cell viability was assessed by MTT reduction assay.Cell adhesion on PLGA/PCL/nHA was observed by scanning electron microscopy(SEM).Results: BMSCs cells viability were not affected,the proliferation and growth were not affected by PLGA/PCL/nHA,and BMSCs cells could be attached to with a spindle shape or a polygonal shape and extended the pseudopod on PLGA/PCL/nHA.Conclusions: The composite scaffolds is biocompatible and crucial in regulating cellular functions,including survival,adhesion,proliferation,and the like.
出处 《口腔颌面外科杂志》 CAS 2011年第5期326-329,333,共5页 Journal of Oral and Maxillofacial Surgery
基金 上海市科学技术委员会资助项目(0852nm03600)
  • 相关文献

参考文献15

  • 1孙俊,徐红珍,苏俭生.基于聚乙二醇-聚乳酸-聚乙二醇水凝胶的兔骨髓基质干细胞三维培养[J].同济大学学报(医学版),2010,31(6):23-27. 被引量:2
  • 2Marolt D, Augst A, Freed LE, et al. Bone and cartilage tissue constructs grown using human bone marrow stromal cells, silk scaffolds and rotating bioreactors[J]. Biomaterials, 2006, 27(36): 6138-6149.
  • 3Roostaeian J, Carlsen B, Simhaee D, et al. Characterization of growth and osteogenic differentiation of rabbit bone marrow stromal cells[J]. J Surg Res, 2006,133(2):76-83.
  • 4Krzymanski G, Kalczak M, Wiktor-Jedrzejczak W. The use of bone-marrow-derived fibroblastoid cells and fresh bone marrow in the treatment of bone defects: an experimental study[J]. Int J Oral Maxillofac Surg, 1997, 26(1): 55-60.
  • 5杨柳,段小军.骨组织工程学中种子细胞研究的前沿问题[J].中国临床康复,2002,6(4):532-533. 被引量:44
  • 6Burg KJ, Porter S, Kellam JF. Biomaterial developments for bone tissue engineering[J]. Biomaterials, 2000, 21(23): 2347-2359.
  • 7Rezwan K, Chen QZ, Blaker J J, et al. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering [J]. Biomaterials, 2006, 27 (18): 3413-3431.
  • 8Yoshioka T, Kamada F, Kawazoe N, et al. Structural changes and biodegradation of PLLA, PCL, and PLGA sponges during in vitro incubation[J]. Polymer Engineering & Sciencs, 2010, 50(10): 1895-1903.
  • 9Wang H, Li Y, Zuo Y, et al. Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering [J]. Biomaterials, 2007, 28(22): 3338-3348.
  • 10廖大鹏,周正炎.羟基磷灰石在颅颌面外科中的应用现状[J].口腔颌面外科杂志,2000,10(2):149-153. 被引量:8

二级参考文献64

共引文献55

同被引文献18

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部