摘要
A comparative study on mechanical properties and microstructure of 316L austenitic stainless steel between solution treated specimen and hot rolled specimen was conducted. After a specimen was subjected to solution treatment at 1 050 ℃ for 6 min, its mechanical properties were determined through tensile and hardness tests. Based on the true stress vs true strain and engineering stress vs engineering strain flow curves, the work hardening rate has been explored. The results show that the solution treated specimen has an excellent combination of strength and elongation, and that this steel is easy to work-hardening during deformation. Optical microscope, scanning electron micro- scope, transmission electron microscope and X-ray diffraction examinations were conducted, these reveal that twins in 316L austenitic stainless steel can be divided into suspended twin and transgranular twin which have different for mation mechanisms in growth, and that the deformation induced martensite nucleated and grown in the shear band intersections can be observed, and that the fracture surfaces are mainly composed of dimples and exhibit a tough fracture character.
A comparative study on mechanical properties and microstructure of 316L austenitic stainless steel between solution treated specimen and hot rolled specimen was conducted. After a specimen was subjected to solution treatment at 1 050 ℃ for 6 min, its mechanical properties were determined through tensile and hardness tests. Based on the true stress vs true strain and engineering stress vs engineering strain flow curves, the work hardening rate has been explored. The results show that the solution treated specimen has an excellent combination of strength and elongation, and that this steel is easy to work-hardening during deformation. Optical microscope, scanning electron micro- scope, transmission electron microscope and X-ray diffraction examinations were conducted, these reveal that twins in 316L austenitic stainless steel can be divided into suspended twin and transgranular twin which have different for mation mechanisms in growth, and that the deformation induced martensite nucleated and grown in the shear band intersections can be observed, and that the fracture surfaces are mainly composed of dimples and exhibit a tough fracture character.