期刊文献+

基于频率域的显著性区域提取方法

Frequency domain based on salient region extraction
下载PDF
导出
摘要 一般的视觉显著性区域提取方法都不能一致地突出显著性区域和给出显著目标定义明确的边界,因此提出一种基于频率域的显著性区域提取方法.该方法使用高斯差分滤波器的组合来保持原图像更多的频率信息,在频率域里利用颜色和亮度信息来预测中间-周围对比度.该方法不仅能输出完整分辨率的显著图,而且解决了上述两个问题.对真实数据试验结果表明,该方法分割的查准率和查全率都好于多尺度分析方法和Itti方法. General visual salient region extraction methods can not consistently highlight salient region and give well-defined boundaries of salient objects. Therefore, a salient region extraction method based on the frequency domain is proposed. This method uses a combination of DoG filters to retain more frequency content from the original images, and uses color and brightness information to estimate the center-surround contrast in the frequency domain. This method not only outputs full-resolution salient map, but also solves the above two problems. This method outperforms on the ground-truth evaluation and on the segmentation task by achieving both higher precision and better recall than the multi-scale analysis method and Itti's method.
作者 于振洋
出处 《长沙理工大学学报(自然科学版)》 CAS 2011年第3期83-88,共6页 Journal of Changsha University of Science and Technology:Natural Science
基金 江苏省属高校自然科学研究资助项目(11KJD520003) 淮安市科技支撑计划资助项目(HAG2010030)
关键词 显著图 频率域 多尺度分析 图像分割 查全率 saliency map level set spectral residual image segmentation recall
  • 相关文献

参考文献10

  • 1L Itti,C Koeh, E Niebur. A model of saliency-based visual attention for rapid scene analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intel- ligence, 1998,20(11) : 1254-1259.
  • 2J Harel, C Koch, P Perona. Graph-based visual sali- ency[J].Advances in Neural Information Processing Systems, 2007(19) : 545-552.
  • 3X Hou,L Zhang. Saliency deteetion:a spectral resid- ual approach[A]. IEEE Conference on Computer Vi- sion and Pattern Recognition [C]. Minneapolis: IEEE, 2007 : 1-8.
  • 4王国营,梁春迎.一种图像显著区域的提取方法[J].计算机应用,2010,30(6):1619-1621. 被引量:13
  • 5D Marr. Vision: A computational investigation into the human representation and processing of visual information[M]. San Francisco. W H Freeman, 1982.
  • 6D G Lowe. Distinctive image features from scale-in- variant feature points [J].International Journal of Computer Vision,2004(60) :91-110.
  • 7S Alpert, M Galun, R Basri, et al. Segmentation byprobabilistic bottom, up aggregation and cue integral tion[A]. IEEE International Conference on Comput1 er Vision and pattern Reeognition[C]. Minneapolis;[ IEEE, 2007 : 1-8,.
  • 8J L Crowley,O Riff,J H Piater. Fast computation of characteristic scale using a half octave pyramid[A]. International Conference on Scale-Space Theories in Computer Vision[C]. USA: Springer-Verlag, 2003.
  • 9C Guo,L Zhang. A novel multi-resolution spatiotem- poral saliency detection model and its applications in image and video compression [J]. IEEE Transactions on Image Processing, 2010,19 (1) ~185-198.
  • 10T Liu,J Sun,N N Zheng,et al. Learning to detect a salient ohject[J].IEEE Transactions on Pattern A- nalysis and Machine Intelligenee, 2011,33 (2) .. 353- 367.

二级参考文献8

  • 1张鹏,王润生.基于视点转移和视区追踪的图像显著区域检测[J].软件学报,2004,15(6):891-898. 被引量:53
  • 2ITTI L,KOCH C,NIEBUR E.A model of saliency-based visual attention for rapid scene analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(11):1254-1259.
  • 3RAN J,NGAN K,LI M,et al.Unsupervised extraction of visual attention objects in color images[J].IEEE Transactions on Circuits and Systems for Video Technology,2006,16(1):141-145.
  • 4KO B C,NAM J Y.Object-of-interest image segmentation based on human attention and semantic region clustering[J].Journal of Optical Society of America A,2006,23(10):2462-2470.
  • 5MA Y F,ZHANG H J.Contrast-based image attention analysis by using fuzzy growing[C]//Proceedings of the Eleventh ACM International Conference on Multimedia.New York:ACM Press,2003:374-381.
  • 6OHASHI T,AGHBARI Z,MAKINOUCHI A.Hill-climbing algorithm for efficient color-based image segmentation[C]//SPPRA2003:LASTED International Conference on Signal Processing,Pattern Recognition,and Applications.Rhodes,Greece:[s.n.],2003.
  • 7ITTI L.iLab neuromorphic Vision C++toolkit[EB/OL].[2009-11-10].http://ilab.usc.edu/toolkit/.
  • 8张菁,沈兰荪,高静静.基于视觉注意模型和进化规划的感兴趣区检测方法[J].电子与信息学报,2009,31(7):1646-1652. 被引量:24

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部