期刊文献+

荷电态对锰酸锂电池储存性能的影响 被引量:4

Effect of state of charge on storage performance of manganese spinel battery
下载PDF
导出
摘要 采用商品化的LiMn2O4和石墨作为正负极材料制作锰酸锂动力电池,研究锰酸锂电池在不同荷电态下的储存性能,并且利用扫描电镜(SEM)、X线衍射(XRD)、循环伏安(CV)和交流阻抗(AC)等分析检测手段表征LiMn2O4电极储存前后的结构、形貌和表面状态变化,测试锰酸锂电池储存前后的电化学性能。研究结果表明:锰酸锂在放电态下储存的容量恢复率最高,达到99.4%;满电储存后容量恢复率最低,为93.6%;储存后锰酸锂电池的循环性能均有所改善,其中满电储存后循环性能最好,170次循环容量保持率为89.7%,储存前170次循环容量保持率为85.4%;锰酸锂电池储存后容量衰减随着荷电态的增加而增加,这主要是由Mn溶解量以及储存后正极表面极化的增加而引起的。 The power battery was manufactured with the commercial LiMn2O4 and graphite.The storage performances of LiMn2O4 batteries at different charged states were studied.Structure,morphology and surface state change of the LiMn2O4 before and after storage were observed by scanning electron microscopy(SEM),X-ray diffraction(XRD),cyclic voltammograms(CV) and electrochemical impedance spectroscopy(EIS),respectively.The electrochemical performances of LiMn2O4 battery before and after storage were tested.The results show that the capacity recovery of LiMn2O4 at discharge state is the best,and it is 99.4%,while the ratio at full charged state is the smallest,which is 93.6%.The cycling performance is improved because of the low capacity and MnO2 film deposited on the electrode.The cycling performance of LiMn2O4 after storage is improved.The cycling performance of LiMn2O4 stored at full charged state is the best,and the capacity retaining is 89.7% after 170 cycles.The capacity retaining is 85.4% after 170 cycles before storage.The capacity fading of LiMn2O4 battery is increased with the increase of charge state,which is because of the increase of Mn dissolution and polarization of electrode.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第10期2929-2934,共6页 Journal of Central South University:Science and Technology
基金 国家重点基础研究发展计划("973"计划)项目(2007CB613607) 江苏大学高级人才启动基金资助项目(10JDG041)
关键词 锰酸锂 储存性能 电化学性能 衰减机理 荷电态 lithium manganese spinel storage performance electrochemical performance capacity fading mechanism state of charge
  • 相关文献

参考文献12

  • 1Amine K, Tukamoto H, Yasuda H, et al , Preparation and electrochemical investigation of LiMn2-xMexO4 (Me: Ni, Fe, and x=0.5, 1) cathode materials for secondary lithium batteries[J]. Journal of Power Sources, 1997, 68 (2): 604-608.
  • 2Hong Y S, Han C H, Kim K, et al, Structural and electrochemical properties of the spinel Li(Mn2-xLix/4Co3x/4)O4[J]. Solid State Ionics, 2001, 139(1/2): 75-81.
  • 3李运姣,常建卫,李洪桂,赵中伟,孙召明,霍广生,孙培梅.富锂型掺钴尖晶石锂锰氧化物的结构与电化学性能[J].中南大学学报(自然科学版),2004,35(3):381-385. 被引量:14
  • 4Alcantara R, Jaraba M, Lavela P, et al, New LiNiyCO1-2yMn1+yO4 spinel oxide solid solutions as 5 V electrode material for Li-Ion batteries[J]. Journal of Electrochemical Society, 2004, 151(1): A53-58.
  • 5Yoon C S, Kim C K, Sun Y K, Cycling behavior of selenium-doped LiMn2O4 spinel cathode material at 3 V for lithium secondary batteries[J]. Journal of Power Sources, 2002, 109(1): 234-238.
  • 6Eftekhari A, Solid State Ionics, Aluminum oxide as a multi-fimction agent for improving battery performance of LiMn2O4 cathode[J]. Journal of Power Sources, 2004, 167(3/4): 237-242.
  • 7Gnanaraj J S, Pol V G, Gedanken A, et al, Improving the high-temperature performance of LiMn2O4 spinel electrodes by coating the active mass with MgO via a sonochemical method[J].Electrochemistry. Communication, 2003, 5(11): 940-945.
  • 8Yamane H, Saitoh M, Sano M, et al, Cycle performance in each state-of-charge in LiMn2O4[J]. Journal of Electrochemical Society, 2002, 149(10): 1514-1519.
  • 9Takahashi K, Saitoh M, Asakura N, et al, Electrochemical properties of lithium manganese oxides with different surface areas for lithium ion batteries[J]. Journal of Power Sources, 2004 136(1): 115-121.
  • 10Liu Y J, Li X H, Guo H J, et al, Electrochemical performance and capacity fading reason of LiMn2O4/graphite batteries stored at room temperature[J]. Journal of Power Sources. 2009, 189(2): 721-725.

二级参考文献18

  • 1Arora P,Popov B N,White R E.Electrochemical investigations of cobalt-doped LiMn2O4 as cathode material for lithium-ion batteries[J].J Electrochem Soc,1998,145(3):807-815.
  • 2Pereamuage D,Abraham K M.Preparation and electrochemical characterization of overlithiated material spinel LiMn2O4[J].J Electrochem Soc,1998,145:1131-1136.
  • 3Park Y J,Kim J G,Kim M K,et al.Electrochemical properties of LiMn-2O-4 thin films:suggestion of factors for excellent rechargeability[J].J Power Sources,2000,87(1-2):69-77.
  • 4Siapkas D I,Mitsas C L,Samaras I,et al.Synthesis and characterization of LiMn-2O-4 for use in Li-ion batteries[J].J Power Sources,1998,72(1):22-26.
  • 5Sigala C,Le Gal La Salle A,Piffard Y,et al.Influence of the Cr content on the electrochemical behavior of the LiCryMn- 2-y- O4 (0≤y≤1) compounds Ⅱ.Cyclicvoltammetric study of bulk and superficial process[J].J Electrochem Soc,2001,148(8):A819-A825.
  • 6Du K,Xie J Y,Wang J L,et al.LiMn2-xCrxO-4 spinel prepared by a modified citrate route with combustion[J].J Power Sources,2003,119-121:130-133.
  • 7Lee J F,Tsai Y W,Santhanam R,et al.Local structure transformation of nano-sized Al-doped LiMn2O4 sintered at different temperatures[J].J Power Sources,2003,119-121:721-726.
  • 8Lin R S,Shen C H.Structural and electrochemical study of cobalt doped LiMn-2O-4 spinels[J].Solid State Ionics,2003,157(1-4):95-100.
  • 9Lee Y J,Eng C,Grey C P.Li magic angle spining NMR study of the cathode material LiNixMn2-xO4-effect of Ni doping on the local structure during charging[J].J Electrochem Soc,2001,148(3):A249-A257.
  • 10Shigemura H,Sakaebe H,Kageyama H,et al.Structure and electrochemical properties of LiFexMn2-xO4(0≤x≤ 0.5) spinel as 5 V electrode material for lithium batteries[J].J Electrochem Soc,2001,148(7):A730-A736.

共引文献13

同被引文献35

  • 1刘昭林,张自会,李寿川,廖福宁.镍氢电池自放电与开路电压的关系[J].电池,1996,26(6):266-267. 被引量:4
  • 2Zimmerman A.H.Self-Discharge Losses in Lithium-Ion Cells[J].IEEE AESS Systems Maganie,2004:19-24.
  • 3Tarascon J.M,Mckinnon W.R,Goowar F,et al.Synthesis conditionsand oxygen stoichiometry effects on Li insertion into the spinel LiMn2 04[J].Journal of Electrochemical Society,1994,141(6):1421-1431.
  • 4Dupr6 N.,Martin J.F.,Jeremy Degryse,et al.Aging of the LiFeP04positive electrode interface in electrolyte[J].Journal of Power Sources,2010,195:7415-7425.
  • 5Iltchev N.,Chen Y.,Okada S.,Yamakic J.LiFeP04 storage at roomand elevated temperatures[J].Journal of Power Sources,2003,119-121:749-754.
  • 6Hahn M.,Barbieri O.,Campana F.P.,Kotz R.,Gallay R.Carbonbased double layer capacitors with aprotic electrolyte solutions:thepossible role of intercalation/insertion processes,Appl.Phys.A,2006,82:633-638.
  • 7Yazami R.,Reynier Y.F.Mechanism of self-discharge in graphite-lithium anode[J].Electrochimica Acta,2002,47 ; 1217-1223.
  • 8Zimmerman A.H.Self-Discharge Losses in Lithium-Ion Cells[J].IEEE AES Systems Magazine,2004:19-24.
  • 9Smart M.C.,Ratnakumar B.V.,Whitcanack L.,et al.PerformanceCharacteristics of Lithium-Ion Cells for NASA's Mars 2001 LanderApplication[J].IEEE AES Systems Magazine,1999:36-42.
  • 10ZIMMERMAN A H. Self-discharge losses in lithium-ion cells [J]. IEEE AESS Systems Magazine, 2014(1): 19-24.

引证文献4

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部