期刊文献+

粗糙集-BP神经网络组合方法及其应用 被引量:10

Method of rough sets-back propagation neural network and its application to identification of surrounding rock stability
下载PDF
导出
摘要 将神经网络与数据挖掘的知识相结合,提出粗糙集-BP神经网络组合方法,并将其应用于围岩稳定性判别。首先,基于山东兖州矿区煤巷信息数据库,建立回采巷道围岩稳定性知识表达系统,对数据进行离散化处理;其次,针对传统BP神经网络收敛速度慢、容错性差、结果不唯一的缺点,采用MATLAB软件开发的粗糙集数据分析程序,对生成的决策表进行挖掘分析,通过挖掘的决策知识引导训练样本的选取和神经网络的建立;最后,在煤巷围岩稳定性判别中予以应用。研究结果表明:BP神经网络克服了传统BP神经网络的缺点,具有容错性好、训练速度快、全局逼近性好、精度高等优点,此方法能较好地用于解决巷道围岩稳定性判别问题。 Combining neural network with data mining,the identifying method of surrounding rock stability was brought forward.Firstly,a knowledge expression system based on information database of Yanzhou Coal Minerial roadway was founded,and its data were discretized.Secondly,aiming at the defects of traditional BP neural network,namely slow convergence,poor fault tolerance and inconsistent result,decision table was obtained by rough sets data analysis program compiled by MATLAB software;afterwards,decision knowledge was used to conduct constitution of neural network and training samples selection.In the end,the stability of surrounding rock was studied.The results show that this method conquers many disadvantages of traditional BP neural network,and possesses many merits,such as well fault tolerance,fast education speed,high precision,good universal approximation,and so on.Therefore,it can be preferably used to identify the stability of surrounding rock.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第10期3189-3194,共6页 Journal of Central South University:Science and Technology
基金 江西省教育厅科研基金资助项目(GJJ09493) 南昌航空大学博士启动基金资助项目(EA200911023) 南昌航空大学科技创新团队项目(EB200911299)
关键词 粗糙集 BP神经网络 数据挖掘 MATLAB软件 围岩稳定性判别 rough sets BP neural network data mining MATLAB software identification of surrounding rock stability
  • 相关文献

参考文献15

  • 1Fayyad U, Stolorz E Data mining and KDD: promise and challenges[J]. Future Generation Computer Systems, 1997, 13(2/3): 99-115.
  • 2YANG Ying-jie, ZHANG Qing. The application of neural networks to rock engineering systems(RES)[J]. International Journal of Rock Mechanics and Mining Science, 1998, 35(6): 727-745.
  • 3Leu S S, Chen C N, Chang S L. Data mining for tunnel support stability: neural network approach[J]. Automation in Construction, 2001, 10(4): 429-441.
  • 4ZHU Wei-shen, LI Shu-cai, LI Shu-chen, et al. Systematic numerical simulation of rock tunnel stability considering different rock conditions and construction effects[J]. Tunnelling and Underground Space Technology, 2003, 18(5): 531-536.
  • 5Durand F, Vargas E A, Vaz L E. Applications of numerical limit analysis (NLA) to stability problems of rock and soil masses[J]. International Journal of Rock Mechanics and Mining Sciences, 2006, 43 (3): 408-425.
  • 6宫凤强,李夕兵,高科.地下工程围岩稳定性分类的突变级数法研究[J].中南大学学报(自然科学版),2008,39(5):1081-1086. 被引量:63
  • 7冯夏庭,马平波.基于数据挖掘的地下硐室围岩稳定性判别[J].岩石力学与工程学报,2001,20(3):306-309. 被引量:28
  • 8Pawlak A. Rough sets[J]. International Journal of Information and Computer Science, 1982, 11 (1): 341-356.
  • 9谭旭,陈英武,王桢珍.广义相似关系下的不完备信息系统粗糙集模型[J].中南大学学报(自然科学版),2009,40(5):1360-1366. 被引量:2
  • 10代春艳.粗糙集理论及其应用发展综述[J].重庆工商大学学报(自然科学版),2004,21(6):575-579. 被引量:12

二级参考文献38

共引文献101

同被引文献126

引证文献10

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部