期刊文献+

基于语义区域提取的图像重排 被引量:3

Image Re-ranking Based on Extraction of Semantic Regions
下载PDF
导出
摘要 针对目前图像搜索引擎难以正确把握用户真正意图的问题,从爬虫Web图像搜索引擎检索结果入手,提出三种聚类算法来提取海量Web图像中的语义区域.这三种聚类算法包括确定初始化中心的K-means聚类、确定参数的最大期望聚类以及基于半监督的K-means聚类算法.然后选取显著值较大的显著区域作为语义区域.实验分析比较了三种聚类算法的有效性,最终实现的图像重排系统能比网络搜索引擎更好地反馈给用户精确而且有序的查询结果. It is difficult for current image search engines to accurately grasp the real intention of users. Based on the search results, we propose three clustering algorithms to extract semantic regions of Web images. These methods include K-means clustering with determined k centers, expectation maximization clustering with the determined parameters, and semi-supervised K-means clustering. We then select the salient regions with the high salient scores as the semantic regions. We demonstrate the experimental results by comparing the three clustering algorithms. The proposed image re-ranking system can more accurately show the ordered search results than web image engines.
出处 《自动化学报》 EI CSCD 北大核心 2011年第11期1356-1359,共4页 Acta Automatica Sinica
基金 教育部留学回国人员科研启动基金 高等学校博士学科点专项科研基金(20090184120022) 中央高校基本科研业务费专项资金科技创新项目(SWJTU09CX036)资助~~
关键词 语义区域提取 半监督聚类 K-MEANS聚类 最大期望聚类 图像重排 Extraction of semantic regions semi-supervised clustering K-means clustering expectation maximization clustering image re-ranking
  • 相关文献

参考文献1

二级参考文献18

  • 1Carneiro G, Chan A B, Moreno P J, Vasconcelos N. Supervised learning of semantic classes for image annotation and retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(3): 394-410.
  • 2Mori Y, Takahashi H, Oka R. Image-to-word transformation based on dividing and vector quantizing images with words. In: Proceedings of the International Workshop on Multimedia Intelligence Storage and Retrieval Management. Orlando, USA: Springer, 1999. 1-9.
  • 3Zhang Q N, Izquierdo E. Adaptive salient block-based image retrieval in multi-feature space. Image Communication, 2007, 22(6): 591-603.
  • 4Jeon J, Lavrenko V, Manmatha R. Automatic image anno- tation and retrieval using cross-media relevance models. In: Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Informaion Retrieval. Toronto, Canada: ACM, 2003. 119-126.
  • 5Liu J, Wang B, Lu H, Ma S. A graph-based image annotation framework. Pattern Recognition Letters, 2008, 29(4): 407-415.
  • 6Kokkinos I, Maragos P. Synergy between object recognition and image segmentation using the expectation-maximization algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(8): 1486--1501.
  • 7Jung J J. Exploiting semantic annotation to supporting user browsing on the web. Knowledge-Based Systems, 2007, 20(4): 373-381.
  • 8Fan J P, Gao Y L, Luo H Z, Xu G Y. Statistical modeling and conceptualization of natural images. Pattern Recognition, 2005, 38(6): 865-885.
  • 9Spirkovska L. A Summary of Image Segmentation Techniques, NASA Technical Memorandum 104022, Ames Research Center, USA, 1993.
  • 10Blekas K, Likas A, Galatsanos N, Lagaris I. A spatiallyconstrained mixture model for image segmentation. IEEE Transactions on Neural Network, 2005, 16(2): 494-498.

共引文献7

同被引文献41

  • 1HIDEYUKI Tamura, MORI, TAKASHI Yamawaki. Textural Features Corresponding to Visual Perception [ J ]. IEEE Trans, Systems, Man and Cybernetics, 1978,8(6) :460-473.
  • 2STARCK JL, CANDES EJ, DONOHO DL. The Curve- let Transform for Image Denoisong [J].IEEE Trans. Image Processing ,2002,11 ( 6 ) :670 - 684.
  • 3YUAN Hua, ZHANG XiaoPing. Statistical Modeling in the Wavelet Domain for Compact Feature Extraction and Similarity Measure of Images [J].IEEE Trans. Circuits and Systems for Video Technology, 2010,20 (3) :439 -445.
  • 4CANSES Emmanuel, DEMANET Laurent, DONOHO David,et al. Fast Discrete Curvelet Transforms [J]. Multiscal Modeling and Simulation, 2006, 5 ( 3 ) : 861 - 899.
  • 5IJ Sumana, MM Islam, ZHANG DengSheng, et al. Content based image retrieval using curvelet transform [ C]. In Proc. 2008 IEEE 10th Workshop on. Multime- dia Signal Processing, Carins, Qld ,2008 : 11 - 16.
  • 6B. S Manjunath, W. Y Ma. Texture Features For Brow- sing And Retrieval Of Image Data [ J ]. IEEE Trans, Pattern Analysis and Machine Intelligence, 1996, 18 (8) :837 -842.
  • 7CHEN LianPing, Lu GuoJun, ZHANG DengSheng. Effects of Different Gabor Filter Parameters on Image Retrieval by Texture [ C ]. In Proc. 2004. Proceedings. 10th International. Multimedia Modelling Conference, 2004:273 - 278.
  • 8Chittajallu D R, Shah S K, Kakadiaris I A. A Shape-driven MRF Model for the Segmentation of Organs in Medical lmages[C]//Proc of the 23rd IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, USA: IEEE Press, 2010.
  • 9Li Qingsheng, Liu Guoying. Multi-resolution Markov Random Field Model with Variable Potentials in Wavelet Domain for Texture Image Segmentation[C]//Proc. of 2010 International Conference on Computer Application and System Modeling. Taiyuan, China: [s. n.], 2010.
  • 10Zhang Zhiyu, Zhang Xiaodan, Zhang Jiuing. SAR Image Pro- cessing Based on Fast Discrete Curvelet Transform[C]//Proc. ol International Conference on Ilfformation Technology and Applications. Chengdu, China: [s. n.], 2009.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部