期刊文献+

多视角下结合形状和运动信息的三维人体姿态估计

Multiview 3D Human Pose Estimation with Shape and Motion Information
下载PDF
导出
摘要 该文以多视角同步视频为输入,提出综合利用形状和运动信息的3维人体姿态估计方法。该方法将人体分为头、躯干和四肢等3部分,每部分利用运动信息来预测当前的状态,并以形状信息作为检测器来确定姿态。这种在姿态估计中使用互补信息的方式极大地解决了漂移和收敛到局部极小的问题,也使系统能自动初始化和失败后重初始化。同时,多视角数据的使用也解决了自遮挡问题和运动歧义性。在包含多种运动类型的序列上的测试结果说明了该方法的有效性,对比实验结果也优于Condensation算法和退火粒子滤波。 This paper presents a method for 3D human pose estimation using shape and motion information from multiple synchronized video streams.It separates the whole human body into head,torso and limbs.The state of each part in current frame is predicted by motion information,and the shape information is used as detector for the pose.The use of complementary cues in the system alleviates the twin problem of drift and convergence to local minima,and it also makes the system automatically initialize and recover from failures.Meantime,the use of multiple data also allows us to deal with the problems due to self-occlusion and kinematic singularity.The experimental results on sequences with different kinds of motion illustrate the effectiveness of the approach,and the performance is better than the Condensation algorithm and annealing particle filter.
出处 《电子与信息学报》 EI CSCD 北大核心 2011年第11期2658-2664,共7页 Journal of Electronics & Information Technology
基金 国家自然科学基金青年基金(61007004) 深圳市建设国家级信息科学与技术重点实验室基金(010301)资助课题
关键词 人体姿态估计 体素数据 形状特征 运动信息 Human pose estimation Voxel data Shape feature Motion information
  • 相关文献

参考文献20

  • 1Fossati A, Dimitrijevic M, and Lepetit V, et al.. From canonical poses to 3D motion capture using a single camera[J] IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(7): 1165-1181.
  • 2Wei Xiao-lin and Chai Jin-xiang. VideoMocap: modeling physically realistic human motion from monocular video sequences[J]. ACM Transactions on Graphics, 2010, 29(4): Article 42, 10 pages.
  • 3Daubney B, Gibson D, and Campbell N. Monocular 3D human pose estimation using sparse motion features[C]. IEEE International Conference on Computer Vision Workshops, Kvoto, 2009: 1050-1057.
  • 4Andriluka M, Roth S, and Schiele B. Monocular 3D pose estimation and tracking by detection[C]. IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, CA, 2010: 623-630.
  • 5Delamarre Q and Faugeras O. 3D articulated models and multiview tracking with physical forces[J]. Computer Vision and Image Understanding, 2001, 81(3): 328-357.
  • 6Husz Z and Wallace A. Evaluation of a hierarchical partitioned particle filter with action primitives[C]. IEEE Conference on Computer Vision and Pattern Recognition 2nd Workshop on Evaluation of Articulated Human Motion and Pose Estimation, Brown University, USA, 2007: 1-8.
  • 7Knossow D, Ronfard R, and Horaud R. Human motion tracking with a kinematic parameterization of extremal contours[J]. International Journal of Computer Vision, 2008, 79(3): 247-269.
  • 8Sundaresan A and Chellappa R. Multicamera tracking of articulated human motion using shape and motion cues[J]. IEEE Transactions on Image Processing, 2009, 18(9): 27-38.
  • 9Mikic I, Trivedi M, and Hunter E, et al.. Human body model acquisition and tracking using voxel data[J]. International Journal of Computer Vision, 2003, 53(3): 199-223.
  • 10Mflndermann L, Corazza S, and Andriacchi T. Accuratelymeasuring human movement using articulated ICP with soft-joint constraints and a repository of articulated models[C]. IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, 2007: 1-6.

二级参考文献10

  • 1Blackman S S and Popoli R.Design and Analysis of Modern Tracking System[M].Norwood MA:Artech House,1999:221-252.
  • 2Blom H A P and Bloem E A.Exact Bayesian and particle filtering of stochastic hybrid systems[J].IEEE Transactions on Aerospace and Electronic Systems,2007,43(1):55-70.
  • 3Liang Yan,Wang Zeng-fu,and Cheng Yong-mei,et al..Estimation of Markov jump systems with mode observation one-step lagged to state measurement[C].The 10th International Conference on Information Fusion,Québec City,Canada,9-12 July 2007:1-6.
  • 4Mcginnity S and Irwin G W.Multiple model bootstrap filter for maneuvering target tracking[J].IEEE Transactions on Aerospace and Electronic Systems,2000,36(3):1006-1012.Driessen H and Boers Y.Efficient particle filter for jump Markov nonlinear systems[J].IEE Proceedings.Radar,Sonar and Navigation,2005,152(5):323-326.
  • 5Yacine M and Mohand S D.Genetic algorithm combined to IMM approach for tracking highly maneuvering targets[J].IAENG International Journal of Computer Science,2008,35(1):41-46.
  • 6Driessen H and Boers Y.Efficient particle filter for jump Markov nonlinear systems[J].IEE Proceedings.Radar,Sonar and Navigation,2005,152(5):323-326.
  • 7Doucet A,Gordon N,and Krishnamurthy V.Particle filters for state estimation of jump Markov linear systems[J].IEEE Transactions on Signal Processing,2001,49(3):613-624.
  • 8Caron F,Davy M,and Duflos E,et al..Particle filtering for multisemor data fusion with switching observation models:Application to land vehicle pesitioning[J].IEEE Transactions on Signal Processing,2007,55(6):2703-2719.
  • 9Fredrik G,Niclas B,and Urban F,et al..Particle filters for positioning,navigation and tracking[J].IEEE Transactions on Signal Processing,2002,50(2):425-437.
  • 10刘贵喜,高恩克,范春宇.改进的交互式多模型粒子滤波跟踪算法[J].电子与信息学报,2007,29(12):2810-2813. 被引量:21

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部