期刊文献+

基于二维Chirp-Z变换的星载TOPSAR成像算法 被引量:5

Imaging Algorithm of Spaceborne TOPSAR Data Based on Two-dimension Chirp-Z Transform
下载PDF
导出
摘要 TOPSAR是一种新型的星载SAR宽幅测绘模式。该模式成像算法需要解决三大问题:多普勒频谱混叠、较大的距离徙动和方位输出时间混叠。针对这些问题,该文提出了一种基于2维Chirp-Z变换的成像算法,给出了该算法的完整推导过程和各传递函数的表达式。其中,方位去斜预滤波处理能够在较少的方位总采样点数下解决多普勒频谱混叠;距离向和方位向Chirp-Z变换能够分别完成距离徙动校正和方位信号聚焦。由于该算法只需要在方位向上增加较少的采样点数,且不涉及任何插值操作,故其具有较高的运算效率。仿真数据处理结果验证了提出成像算法的有效性。 Terrain Observation by Progressive scans SAR(TOPSAR) is a novel spaceborne imaging mode with wide swath coverage.Imaging algorithms for such mode are required to resolve three existing problems: Doppler spectrum aliasing,large range cell migration and azimuth output time folding.As for these issue,a new imaging algorithm based on two-dimension Chirp-Z transform is proposed.The complete derivation processing of the presented algorithm and the expression of each transfer function are given in detail.In this algorithm,azimuth pre-filtering with deramp operation is adopted to resolve Doppler spectrum aliasing problem with fewer azimuth samples compared with other methods.Chirp-Z transforms in the range and azimuth domain can implement the large Range Cell Migration Correction(RCMC) and azimuth data focusing,respectively.The presented imaging algorithm only requires the limited azimuth increased samples and with interpolation free.Therefore,it is with high computational efficiency.Simulation results validate the effectiveness of the presented imaging algorithm.
作者 徐伟 邓云凯
出处 《电子与信息学报》 EI CSCD 北大核心 2011年第11期2679-2685,共7页 Journal of Electronics & Information Technology
关键词 TOPSAR 混叠 距离徙动校正 CHIRP-Z变换 Terrain Observation by Progressive scans SAR(TOPSAR) Aliasing Range Cell Migration Correction(RCMC) Chirp-Z transform
  • 相关文献

参考文献1

二级参考文献16

  • 1Moore R K, Claassen J P, Lin Y H. Scannning spaceborne synthetic apreture radar with integrated radiometer. IEEE Trans Aerospo Electron Syst, 1981, AES-17:410-420.
  • 2Guarnieri A M, Prati C. ScanSAR focusing and interferometry. IEEE Traus Geosci Remote Sens, 1996, 34:1029-1038.
  • 3Zan F D, Guarnieri A M. TOPSAR: terrain observation by progressive scans. IEEE Trans Geosci Remote Sens, 2006, 44:2352-2360.
  • 4Meta A, Prats P, Steinbrecher U, et al. TerraSAR-X TOPSAR and ScanSAR comparison. In: Proc. EUSAR08, Friedrichshafen, Germany, VDE, 2008. 277-278.
  • 5Stangl M, Werninghaus R, Schweizer B, et al. TerraSAR-X technologies and first results. IEE Proc Radar Sonar Navig, 2006, 153:86-95.
  • 6Breit H, Balss U, Bamler R, et al. Processing of TerraSAR-X payload data-first results. In: Notarnicola C, Posa F, eds. Proc. of SPIE vol. 6746-SAR Image Analysis, Modeling, and Technique~ IX, Florence, Italy. SPIE, 2(}07. 1-12.
  • 7Prats P, Scheiber R, Mittermayer J, et al. A SAR processing algorithm for TOPS imaging mode based on extended chirp scaling. In: IGARSS'07, Barcelona, Spain, IEEE, 2007. 148-151.
  • 8Prats P, Meta A, Scheiber R, et al. A TOPSAR processing algorithm based on extended chirp scaling: evaluation with TerraSAR-X data. In: Proc. EUSAR08, Friedrichshafen, Germany, VDE, 2008.
  • 9Rostan F, Riegger S, Pitz W, et al. The C-SAR instrument for the GMES sentinel:l mission. In: IGARSS'07, Barcelona, Spain, IEEE, 2007. 215-218.
  • 10Belcher D P, Baker C J. High resolution processing of hybrid strip-map spotlight mode SAR. IEE Proc Radar Sonar Navig, 1996, 143:366-374.

共引文献6

同被引文献73

  • 1WANG R, DENG Y, LOFFELD O, et al. Processing the azimuth-variant bistatic sat data by using monosta- tie imaging algorithms based on two-dimensional prin- ciple of stationary phase[J]. IEEE Trans Geosci Re- mote Sens, 2011, 49(10): 3504-3520.
  • 2ZHEN Jie, ZHANG Zhenhua, WU Shunjun, et al.GNSS illuminator based high range resolution algo- rithm in space-surface bistatic SAR[C]//IGARSS. Honolulu, 25-30 July, 2010: 4608-4611.
  • 3WANG Wenqin. GPS-based time & phase synchroni- zation processing for distributed SAR[J]. IEEE Trans Aerosp Electron Syst, 2009, 45(3): 1040-1051.
  • 4L1 Wenchao, HUANG Yulin, YANG Jianyu, et al. An improved radon-transform-based scheme of doppler centroid estimation for bistatic forward-looking SAR [J]. IEEE Geosci Remote Sens Lett, 2011, 8(2): 379-383.
  • 5LIU Zhe, YANG Jianyu, ZHANG Xiaoling, et al. Study on spaceborne/airborne hybrid bistatic SAR im- age formation in frequency domain[J]. IEEE Geosci Remote Sens Lett, 2008, 5(4): 578-582.
  • 6LOFFELD O, NIES H, PETERS V, et al. Models and useful relations for bistatic SAR processing[J]. IEEE Geosci Remote Sens Lett, 2004, 42(10) : 2031-2038.
  • 7YANG Kefeng, HE Feng, LIANG Diannong, et al. A two-dimensional spectrum for general bistatic SAR processing [J]. IEEE Geosci Remote Sens Lett, 2010, 7(7): 108 112.
  • 8NEO Y, WONG F, CUMMING I. A two-dimen- sional spectrum for bistatic SAR processing using se ries reversion[J]. IEEE Geosci Remote Sens Lett, 2007, 4(1): 93-96.
  • 9GENG Xupu, YAN Honghui, WANG Yanfei. A two-dimensional spectrum model for general bistatic SAR[J]. IEEE Trans Geosci Remote Sens, 2008, 46(8) : 2216-2223.
  • 10WANG Fang, LI Xiang. A New method of deriving spectrum for bistatie SAR processing [J]. IEEE Geosci Remote Sens Lett, 2010, 7(3):483-486.

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部