期刊文献+

基于全极化SAR数据散射机理的农作物分类 被引量:8

Crop classification based on scattering model using full-polarization SAR data
下载PDF
导出
摘要 提出了利用极化相干矩阵对雷达遥感影像进行特征值分解,通过分析分解特征图达到农作物识别、分类的目的。该方法不仅能识别不同农作物,而且对水稻、玉米、大豆较好的识别精度。以江苏省睢宁地区农作物识别为例,利用2009年8月23日Radarsat-2全极化SAR影像数据,结合极化相干矩阵的方法提取不同农作物散射特征的3个参量,分析不同农作物散射机理;结合地面GPS数据进行Wishart监督分类和非监督分类。分类结果表明:城市及水体散射特征特点明显、识别清晰;水稻由于植株底部具有含水层,易与其它农作物区别,水稻分类精度达到97.92%;根据平均散射角的差异性对大豆和玉米进行了区分,最终总分类精度达到78.1%。研究结果表明,全极化雷达数据能提供更为丰富的地物散射信息,是农作物遥感监测的重要数据来源。 The results of eigenvalue decomposition based on the polarimetric coherency matrix using synthetic aperture radar(SAR) data were analyzed for the purposes of identification and classification of crops.This method can identify different crops and have better classification accuracy of rice,corn,and soybean.Taking Suining experimental area in Jiangsu Province as an example,using Radarsat-2 polarimetric SAR image data of August 23,2009,three parameters of scattering characteristics of different crops were extracted and the scattering mechanisms of these crops were analyzed.Using ground GPS data,the different crops were classified with Wishart supervised and unsupervised method.The results showed that the scattering characteristics of city and water were clear.Rice was easily distinguished from other crops for having water layer in plant bottom with the classification accuracy being 97.92%.Corn and soybean were respectively identified according to the difference of average scattering angle.The total accuracy of paddy identification was 78.1%.Overall,full-polarization SAR data can provide richer land scattering information which is an important data source of remote sensing monitoring of crops.
出处 《江苏农业学报》 CSCD 北大核心 2011年第5期978-982,共5页 Jiangsu Journal of Agricultural Sciences
基金 国家"863"高技术研究发展专项(2006AA120108 2006AA120101 2009AA12Z1462) 公益性行业气象科研专项(GYHY201106027) 江苏省农业科技自主创新基金项目[CX(10)430]
关键词 农作物 全极化 散射特征 Wishart分类 crop full-polarization scattering characteristic Wishart classification
  • 相关文献

参考文献6

  • 1FERRO-FAMIL L, POTTIER E, LEE J S. Unsupervised classifi-cation of multi-frequency and fully polarimetric SAR images based on the H/A/Alpha-Wishart classifier[ J]. IEEE Trans Geoscience and Remote sensing, 2001, 39( 11 ) :2332-2342.
  • 2GUILLASO S, FERRO-FAMIL L, REIGBER A, et al. Building characterization using L-band polarimetric interferometric SAR data [ J 1. IEEE Trans Geoscience and Remote sensing, 2005, 2 (3) : 347-351.
  • 3CLOUDE S R, POTTIER E. A review of target decomposition theorems in radar polarimetry [ J]. IEEE Trans Geoscience and Remote sensing, 1996, 34(2) :498-518.
  • 4OUARZEDDINE M, SOUISSI B, BELHADJ-AISSA A. Unsupervised classification using Wishart classifier[ C]. Frascati, Italy: Science and Applications of SAR Polarimetry and Polarimetric Interferometry, 2007 : 255-260.
  • 5廖静娟,王庆.利用Radarsat-2极化雷达数据探测湿地地表特征与分类[J].国土资源遥感,2009,21(3):70-73. 被引量:8
  • 6邵芸,郭华东,范湘涛,刘浩.水稻时域散射特征分析及其应用研究[J].遥感学报,2001,5(5):340-345. 被引量:42

二级参考文献28

  • 1周德民,宫辉力,胡金明,吴丰林.中国湿地卫星遥感的应用研究[J].遥感技术与应用,2006,21(6):577-583. 被引量:43
  • 2张柏.遥感技术在中国湿地研究中的应用[J].遥感技术与应用,1996,11(1):67-71. 被引量:40
  • 3Lanetta R S, Barlogh M E. Application of Multi - temporal Landsat 5 TM Imagery for Wetland Identification [ J ]. Photogrammetric Engineering and Remote Sensing, 1999, 65 ( 11 ) : 1303 - 1310.
  • 4Costa M, Telmer K. Utilizing SAR Imagery and Aquatic Vegetation to Map Fresh and Brackish Lakes in the Brazilian Pantanal Wetlang [ J ]. Remote Sensing of Environment, 2006, 105 : 204 -213.
  • 5Hess L, Melack J , Filoso S, et al. Delineation of Inundated Area and Vegetation along the Amazon Floodplain with the SIR - C Synthetic Aperture Radar [J]. IEEE Transactions on Geoscienee and Remote Sensing, 1995, 33 : 896 -904.
  • 6Kasischke E, Bourgeau - Chavez L. Monitoring South Florida Wetlands Using ERS - 1 SAR Imagery [ J ]. Photogrammetric Engineering and Remote Sensing, 1997, 63 : 281 - 281.
  • 7Kasischke E, Smith K, Bourgeau -Chavez L, et al. Effects of Seasonal Hydrologic Patterns in South Florida Wetlands on Radar Backscatter Measured from ERS - 2 SAR hnagery [ J]. Remote Sensing of Environment, 2003, 88:423 -441.
  • 8Li J, Chen W. A Rule - based Method for Mapping Canada' s Wetlands Using Optical, Radar and DEM Data[J]. International Journal of Remote Sensing, 2005, 26 : 5051 - 5069.
  • 9Parmuchi M, Karsenbaum H, Kandus P. Mapping Wetlands Using Multi - temporal Radarsat - 1 Data and Decision - based Classifier [ J ]. Canadian Journal of Remote Sensing, 2002, 28 : 175 - 186.
  • 10Touzi R. Wetland Characterization Using Polarimetric Radarsat -2 Capability [ A]. Proceedings of IGARSS 2006 [ C ]. Denver: IEEE press, 2006.

共引文献48

同被引文献192

引证文献8

二级引证文献122

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部