摘要
提出了利用极化相干矩阵对雷达遥感影像进行特征值分解,通过分析分解特征图达到农作物识别、分类的目的。该方法不仅能识别不同农作物,而且对水稻、玉米、大豆较好的识别精度。以江苏省睢宁地区农作物识别为例,利用2009年8月23日Radarsat-2全极化SAR影像数据,结合极化相干矩阵的方法提取不同农作物散射特征的3个参量,分析不同农作物散射机理;结合地面GPS数据进行Wishart监督分类和非监督分类。分类结果表明:城市及水体散射特征特点明显、识别清晰;水稻由于植株底部具有含水层,易与其它农作物区别,水稻分类精度达到97.92%;根据平均散射角的差异性对大豆和玉米进行了区分,最终总分类精度达到78.1%。研究结果表明,全极化雷达数据能提供更为丰富的地物散射信息,是农作物遥感监测的重要数据来源。
The results of eigenvalue decomposition based on the polarimetric coherency matrix using synthetic aperture radar(SAR) data were analyzed for the purposes of identification and classification of crops.This method can identify different crops and have better classification accuracy of rice,corn,and soybean.Taking Suining experimental area in Jiangsu Province as an example,using Radarsat-2 polarimetric SAR image data of August 23,2009,three parameters of scattering characteristics of different crops were extracted and the scattering mechanisms of these crops were analyzed.Using ground GPS data,the different crops were classified with Wishart supervised and unsupervised method.The results showed that the scattering characteristics of city and water were clear.Rice was easily distinguished from other crops for having water layer in plant bottom with the classification accuracy being 97.92%.Corn and soybean were respectively identified according to the difference of average scattering angle.The total accuracy of paddy identification was 78.1%.Overall,full-polarization SAR data can provide richer land scattering information which is an important data source of remote sensing monitoring of crops.
出处
《江苏农业学报》
CSCD
北大核心
2011年第5期978-982,共5页
Jiangsu Journal of Agricultural Sciences
基金
国家"863"高技术研究发展专项(2006AA120108
2006AA120101
2009AA12Z1462)
公益性行业气象科研专项(GYHY201106027)
江苏省农业科技自主创新基金项目[CX(10)430]
关键词
农作物
全极化
散射特征
Wishart分类
crop
full-polarization
scattering characteristic
Wishart classification