摘要
笔者将柯布-道格拉斯函数引入参数化多任务委托-代理模型研究,并对模型进行案例分析,研究表明:委托人应该提高重要性高和不确定性较低的任务的激励力度,使其高于重要性低和不确定性较高任务的激励力度;当代理人风险回避性较强和所委托活动的不确定性较高时,应降低激励弱化其风险分担;当代理人的个人能力越强时,委托人应增大代理人的分享系数,进一步激励代理人。
The authors introduced cobb -douglas function into the research of parametric multi -task principal- agent model, and made a case study of the model. The research shows that the principal should increase incentive strength for the tasks with higher im- portance and lower uncertainty, making their incentive strength higher than that for the tasks with lower importance and higher uncer- tainty; when the agent avoids risk strongly and the entrusted task has more uncertainty, the principal should reduce incentive strength to weaken risk sharing; when the individual ability of the agent is strong, the principal should increase the sharing coefficient of the agent to encourage the agent further.
出处
《经济经纬》
CSSCI
北大核心
2011年第6期1-5,共5页
Economic Survey
基金
上海市重点学科建设资助项目(S30504)
上海市研究生教育创新计划资助项目(JWCXSL1021)
关键词
柯布-道格拉斯函数
多任务委托-代理模型
激励机制
相对激励强度
Cobb - Douglas function
multi - task principal - agent model
incentive mechanism
relative incentive intensity