期刊文献+

Contourlet变换的图像分割 被引量:3

Image Segmentation Based on Contourlet Transform
下载PDF
导出
摘要 针对小波域隐马尔可夫树模型分割的图像结果容易产生方向边缘成分模糊和奇异性扩散现象,根据Contourlet变换可以充分捕捉图像中高维奇异性,提出了一种基于Contourlet变换域的新的多尺度图像分割算法.该算法通过Contourlet域隐马尔科夫树模型获得各尺度上的初始分割,采用自适应的上下文结构对分割后的图像进行多尺度间的融合.对合成纹理图像和航拍图像进行分割实验仿真,并与基于小波域隐马尔可夫树模型的图像分割方法进行比较,区域一致性和边缘准确性得到改善,得到更为理想的分割效果,对合成图像降低了错分概率. By using Wavelet Domain Hidden Markov Tree HMT model,the image segmentation resulted in dim edge components and phenomena with singularity and diffusion.Because the singularity in the image of high dimension was fully captured by the Contourlet transformation,the paper presents a new algorithm of multi-scale image segmentation based on the Contourlet transform of domain Hidden Markov Tree model.This algorithm was initially through image Contourlet transform to obtain transform coefficients,to train Contourlet domain Hidden Markov Tree Model,to calculate multi-scale likelihood function and obtain the reliable initial segmentation based on the maximum likelihood estimation(ML) formula,and finally to use adaptive context measurement integrated methods to get ultimate segmentation image.Through the simulation experiment of synthetic texture image and aerial image,compared image segmentation methods based on wavelet domain Hidden Markov Tree model,either visual effects or evaluation parameters illustrate the effectiveness of the algorithm mentioned in this paper,obtain better regional consistency and edge accuracy,and reducing the error probability of synthetic images.
出处 《哈尔滨理工大学学报》 CAS 北大核心 2011年第5期101-105,共5页 Journal of Harbin University of Science and Technology
基金 国家自然科学基金(60875025) 中央高校基本科研业务费专项资金资助课题
关键词 CONTOURLET变换 CHMT模型 隐马尔可夫树 图像分割 自适应的上下文结构 Contourlet transformation Hidden Markov Tree image segmentation context structure of self-adaption
  • 相关文献

参考文献12

  • 1CROUSE M S, NOWAK R D, BARANIUK R G. Wavelet-based statistical Signal Processing Using Hidden Markov Models [ J ]. IEEE Transactions on Signal Processing, 1998, 42 ( 4 ) : 886 - 902.
  • 2CHOI H, RICHARD G, BARANIUK. Multiscale Image Segmen- tation Using Wavelet Domain Hidden Markov Models [ J ]. IEEE Transactions on Image Processing, 2001,10 ( 9 ) : 1309 - 1321.
  • 3STARCK J L, CANDES E J, DONOHO D L. The Curvelet Trans- form for Image Denoising [ J ]. IEEE Transactions on Image Pro- cessing, 2002,11 ( 6 ) : 670 - 684.
  • 4DO M N, VETTERLI M. Contourlets: A Directional Multiresolu- tion Image Representation [ C]//IEEE Int 1 Conf on Image Pro- cessing, Rochester, NY, USA, 2002:254-263.
  • 5RAGHAVENDRA B S, BHAT P S. Contourlet Based Multiresolu- tion Texture Segmentation Using Contextual Hidden Markov Models [ C ]//In:Proceedings of International Conference on Information Technology, Hyderabad, India: Springer, 2004:336 - 343.
  • 6沙宇恒,丛琳,孙强,焦李成.基于Contourlet域HMT模型的多尺度图像分割[J].红外与毫米波学报,2005,24(6):472-476. 被引量:22
  • 7RAMIN E, HAYDER R. Image Denoising Using Translation In- variant Contourlet Transform [ C ]//Proceedings of 2005 IEEE In- ternational Conference on Acoustics, Speech and Signal Process- ing, 2005:557 -560.
  • 8DO M N, VETI'ERLI M. Framing Pyramids [ J ]. IEEE Trans on Signal Processing, 2003, 51(9): 2329-2342.
  • 9DO M N, VETrERLI M. The Contourlet Transform- An Efficient Directional Multiresolution Image Representation [ J 1. IEEE Trans on Image Processing, 2005, 14(12) : 2091 - 2106.
  • 10RONEN O, ROHLICEK J, OSTENDORF M. Parameter Estimation of Dependence Tree Models Using the EM Algorithm [ J]. IEEE Signal Processing Letters, 1995,2 (8) : 157 - 159.

二级参考文献22

  • 1侯彪,刘芳,焦李成.基于小波变换的高分辨SAR港口目标自动分割[J].红外与毫米波学报,2002,21(5):385-389. 被引量:16
  • 2焦李成,谭山.图像的多尺度几何分析:回顾和展望[J].电子学报,2003,31(z1):1975-1981. 被引量:227
  • 3乌旭,胡家升,梁殿亮.基于区域分割的指纹奇异性检测及中心点计算[J].光学精密工程,2006,14(2):229-235. 被引量:12
  • 4CI-IEN F, ZHOU J, YANG C. Reconstructing Orientation Field from Fingerprint Minutiae to Improve Minutiae-matching Accuracy [ J]. IEEE Transactions on Image Processing, 2009, 18 (7): 1665 - 1670.
  • 5SUN H, LAM K, GOLLMANN D. Efficient Fingercode Classification[ J]. IEICE Transactions on Information and Systems, 2008, E91 -D(5) : 1252 -1260.
  • 6王小侠.基于分形维数和小波图像的编码.江苏理工大学学报,2006,22(6):3-5.
  • 7KELLER J,CROWNOVER R, CHEN S. Texture Deseriptinn and Segmentation through Fractal Geometry[ J ]. Comput. Vision Graphics and Image Processing, 1989,45 : 150 - 160.
  • 8DE GONZAGA S L O, VIOLA F, CONCI A. An Approach for Enhancing Fingerprint Images Using Adaptive Gabor Filter Parameters[ J]. Pattern Recognition and Image Analysis, 2008, 18 (3) : 497 -506.
  • 9Candès E J. Monoscale ridgelets for the representation of images with edges [R]. Technical report, Stanford Univ., 1999.
  • 10Candès E J, Donoho D L. Curvelets [R]. Technical report, Stanford Univ., 1999.

共引文献34

同被引文献26

  • 1杨克己.基于谐波小波的自适应滤波在高精度动平衡检测系统中的应用[J].仪器仪表学报,2005,26(z1):133-135. 被引量:6
  • 2ADAMS M D,KOSSENTINI F.Reversible integer to interger wave let transforms for image compression:Performance evalu- tation and analysis [J].IEEE.Transactions on Image Processing, 2002,9(6) 190-1024.
  • 3DONOHO D L,ELAD M.OptimaUy sparse representation in general(non-orthogonal)dictionaries via 11 inimization[EB/OL]. [ 2011--09-- 08 ] .hnp ://www-stat. stanford.edu/m donoho/Re- poxta/2002/OptSpame.Pdf.
  • 4王奇文,郑丽敏,梅树立.基于形态学的小鼠舌头切片图像分割与实现[J].计算机工程,2011,19.
  • 5贾永红.数字图像处理[D].武汉:武汉大学出版社,2003.
  • 6Dunn D, Higgins W E, Wakeley J. Texture segmentation u- sing 2- D Gabor elementary functions [ J ]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 1994, 16 (2) :130-149.
  • 7Choi H, Richard G, Baraniuk. Multiscale lmage Segmenta- tion Using Wavelet Domain tfidden Markov Models [ J ]. I EEETransactions on Image Processing, 2001,10 ( 9 ) : 1309 - 1321.
  • 8程起敏.遥感图像检索技术[M].武汉大学出版社,2011.
  • 9Do M N,Vetterli M. Framing Pyramids[ J]. IEEE Trans on Signal Processing,2003,51 (9) :2329 - 2342.
  • 10Burr P, Adelson E. The Laplacian pyramid as a compact im- age code [ J ]. Communications, IEEE Transactions on, 1983, 31(4) :532 -540.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部