期刊文献+

胫骨生物复合材料多级微纳米结构的韧性机理 被引量:4

Toughness mechanism of hierarchical micro-nanostructures from shankbone biocomposite
下载PDF
导出
摘要 目的研究胫骨生物复合材料多级优良微纳米结构的韧性机理。方法利用扫描电镜观察胫骨成骨的多级微纳米结构。通过多级微纳米结构模型分析揭示胫骨的韧性机理。结果胫骨是一种由羟基磷灰石和胶原蛋白组成的、具有多级微纳米结构的生物复合材料。在不同尺度下的微纳米结构模型分析表明胫骨多层微纳米结构增加了胫骨的断裂能,而羟基磷灰石纤维片的交叉微结构以及羟基磷灰石纳米纤维片的长细形状尺寸增加了纤维片的拔出能。结论胫骨多级优良微纳米结构赋予胫骨高的断裂韧性,可用于仿生复合材料设计。 Objective To Investigate the toughness mechanism of the hierarchical and eximious micro-nanostructures from shankbone biocomposite.Methods The hierarchical micro-nanostructures of a mature shankbone were observed with a scanning electronic microscope and then to explore the toughness mechanism of this shankbone by the analyses on the models with hierarchical micro-nanostructures.Results The shankbone was made from a kind of biocomposite with hierarchical micro-nanostructures,consisting of hydroxyapatite and collagen protein matters.The micro-nanostructural model analyses at different scales indicated that the multilayer microstructure of the bone increased its fracture energy and the crossed microstructure of the hydroxyapatite fiber sheets as well as its long and thin shape size enhanced the maximum pullout energy of the fiber sheets.Conclusions The hierarchical and eximious micro-nanostructures in the bone endow the shankbone with high fracture toughness,and can be applied to the design of biomimetic composites.
出处 《医用生物力学》 EI CAS CSCD 2011年第5期420-425,共6页 Journal of Medical Biomechanics
基金 国家自然科学基金资助项目(10872221,50921063)
关键词 胫骨 生物复合材料 多级微纳米结构 韧性 模型分析 断裂能 Shankbone Biocomposite Hierarchical micro-nanostructures Toughness Model analysis Fracture energy
  • 相关文献

参考文献15

  • 1Currey JD. The many adaptations of bone [ J]. J Bio- mech, 2003, 36(10) : 1487-1495.
  • 2Fratzl P, Gupta HS, Paschalis EP, et al. Structure and mechanical quality of the collagen-mineral nano-composite in bone rJ]. J Mater Chem, 2004, 14: 2115-2123.
  • 3Woesz A, Rumpler M, Stampfl J, et aL Towards bone re- placement materials from calcium phosphates via rapid pro- totyping and ceramic gelcasting [ J ]. Mater Sci Eng C, 2005, 25(2) : 181-186.
  • 4Taylor D. Fracture and repair of bone: A multiscale prob- lem [J]. J Mater Sci, 2007, 42(21) : 8911-8918.
  • 5Hazenberg JG, Taylor D, Lee TC. The role of osteocytes and bone microstructure in preventing osteoporotic frac-tures [ J 1. Osteoporos Inter, 2007, 18 ( 1 ) : 1-8.
  • 6Deligianmi DD, Apostolopoulos CA. Multilevel finite ele- ment modeling for the prediction of local cellular deforma- tion in bone [ J ]. Biomech Model Mechanobiol, 2008, ? (2) : 151-159.
  • 7Koester K J, Ager JW, Ritchie RO. Aging and Fracture of human cortical bone and tooth dentin [J]. JOM, 2008, 60 (6) : 33-38.
  • 8Kim JH, Niinomi M, Akahori T, et al. Fatigue properties of bovine compact bones that have different microstructures EJ~. Inter J Fatigue, 2007, 29(6)= ]039-10.50.
  • 9Yamashita S. Interlaminar Reinforcement of Laminated Composite by Addition of Oriented Whiskers in the Matrix [J]. J Compos Mater, 1992, 26(3): 1254-1263.
  • 10Katayama T, Yamamoto H, Nozato T, et aL Development of solid-fluid biomimetic composites load fispersion effect o! controlled hydrostatic pressure [ Jl. Mater Process Techn- ol, 2001, 119(4) : 65-71.

二级参考文献39

  • 1Eckstein F, Matsuura M, Kuhn V, et al. Sex differences of human trabecular bone microstructure in aging are site-dependent[J]. J Bone Miner Res, 2007, 22(6) . 817-824.
  • 2Homminga J, McCreadie BR, Ciarelli TE, et aL Cancellous bone mechanical properties from normals and patients with hip fractures differ on the structure level, not on the bone hard tissue level[J]. Bone, 2002, 30(5) ; 759-764.
  • 3Ulrich D, van Rietbergen B, Laib A, et al. The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone [ J ]. Bone, 1999, 25 ( 1 ) : 55- 60.
  • 4Hildebrand T, Ruegsegger P. Quantification of bone microarchitecture with the structure model index [J]. Comput Meth Biomech Biomed Eng,1997, 1(1) :15-23.
  • 5Rietbergen BV, Muller R, Ulrich D, et aL Tissue stresses and strain in trabeculae of a canine proximal femur can be quantified from computer reconstructions [ J]. J Biomech, 1999, 32(4) : 443-451.
  • 6Bevill G, Eswaran SK, Gupta A, et aL Influence of bone volume fraction and architecture on computed large-deformation failure mechanisms in human trabecular bone. Bone, 2006, 39(6) : 1218-1225.
  • 7Rietbergen BV, Weinans H, Huiskes R,et aL A new method to determine trabecular bone elastic properties and loading using micromechanical finite element models[ J ]. J Biomech, 1995, 28 ( 1 ) : 69-81.
  • 8Rietbergen BV, Huiskes R, Eckstein F, et al. Trabecular bone tissues trains in the healthy and osteoporotic human femur[J]. J Bone Miner Res, 2003, 18(10) : 1781-1788.
  • 9Verhulp E, van Rietbergen B, Huiskes R. Comparison of micro-level and continuum-level voxel models of the proximal femur[J]. J Biomech, 2006, 39 (16) : 2951-2957.
  • 10Ryan TM,Krovitz GE. Trabecular bone ontogeny in the human proximal femur[J]. J Hum Evol, 2006, 51 (2) : 591- 602.

共引文献25

同被引文献41

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部