期刊文献+

Algorithm of emissivity spectrum and temperature separation based on TASI data 被引量:1

Algorithm of emissivity spectrum and temperature separation based on TASI data
原文传递
导出
摘要 建立了适合于TASI的热红外高光谱发射率的经验关系,以此修正了分离方法(TES)中的MMD模型,在对温度和发射率进行精度评价的基础上,将反演结果应用于城市地表温度的日较差分析。结果表明:(1)反演的温度与实测温度的平均绝对误差为1.8K,平均相对误差为0.59%;(2)地面实测宽波段发射率与反演发射率的平均差值为0.036,差值的标准差为0.032;(3)同种地物的发射率曲线的反演结果与实验室测量发射率曲线的波形是一致的;(4)温度日较差分析结果是合理的。因此,本文的反演精度能满足研究需求,将该方法应用于TASI数据的温度与发射率的分离是可行的。 The retrieval and application of emissivity spectrum and temperature are key issues in thermal infrared remote sensing. Thermal airborne hyperspectral imager has 32 bands from 8 ktm to I 1.5 [am, which can provide abundant useful information for the retrieval of emissivity spectrum and temperature. This paper establishes regression between MMD and 13 min using 274 laboratory reflectance and field emissivity spectra, analyzes its accuracy using the data field measuring, and evaluates urban surface diurnal temperature range. The result shows that: (l) the average absolute difference between the temperature of retrieval and the measurement is 1.8 K, and the relative difference is 0.59%; (2) the mean difference between the broadband emissivity and the mean emissivity from TASI is 0.036, and the standard error of difference is 0.032. Because of the effects of scale and atmosphere, the predicted value does not equal to the laboratory measurement, but the pattern of predicts is similar to the laboratory measurement; (3) the result of diurnal temperature range is reasonable. Therefore, the accuracy of this method can satisfy operational application and it is feasible to retrieve the emissivity spectrum and temperature for TASI data.
出处 《遥感学报》 EI CSCD 北大核心 2011年第6期1242-1254,共13页 NATIONAL REMOTE SENSING BULLETIN
基金 国家高技术研究发展计划(863计划)(编号:2008AA121103 2008AA121102) 国家自然科学基金(编号:41072248)~~
关键词 遥感技术 应用 理论 图像处理 thermal infrared airborne hyperspectral data, temperature, emissivity spectrum, diurnal temperature range, TES
  • 相关文献

参考文献10

  • 1Borel C C. 1998. Surface emissivity and temperature retrieval for a hyperspectral sensor. Proceedings of the International Geoscience and Remote Sensing Symposium, 1 : 546-549 Gillcspie A R. 1985.
  • 2Lithologic mapping of silicate rocks using TIMS//Kahle A B, Abbott E, eds. The TIMS Data User's Work- shop, Passadena: Jet Propulsion Laboratory Publication.
  • 3Gillespie A R, Matsunaga T, Rokugawa S, Cothern J S, Hook S and Kahle A B. 1998. A temperature and emissivity separation algorithm for advanced spaceborne thermal emission and reflection radiometer (ASTER) images. IEEE Transactions Geoseience Remote Sensing, 36(4): 1113 1126 DOI: 10.1109/36.700995.
  • 4Kahle A B, Madura D P and Soha J M. 1980. Middle infrared multi- spectral aircraft scanner data: analysis for geological applications. Applied Optics, 19(14): 2279-2290 DOI: 10.1364/AO. 19.002279.
  • 5Kealy P S and Gabell A R. 1990. Estimation of emissivity and temperature using alpha coefficients. Proceedings of the Second TIMS Workshop. Pasadena: Jet Propulsion Laboratory, JPL Publication 90-55:11 15.
  • 6Matsunaga T A. 1992. A temperature-emissivity separation method using an empirical relationship between the mean, the maximumand the minimum of the thermal infrared emissivity spectrum. Journal of Remote Sensing Society of Japan, 42:83-106.
  • 7Schmugge T, Hook S J and Coil C. 1998. Recovering surface temperature and emissivity from thermal infrared multispectral data. Remote Sensing of Enironment, 65(2): 121-13l DO1: 10.1016/ S0034~257(98)00023 6.
  • 8Sobrino J A, Jimen6z-Mufioz J C, Zarco-Tejada P J, Sepulcre-Canto G and de Miguel E. 2006. Land surface temperature derived from airborne hyperspectral scanner thermal infrared data. Remote Sensing of Enironment, 102(1-2): 99 115 DOI: 10.1016/ j.rse.2006.02.001.
  • 9Yang H, Zhang L F, Fang J Y, Zhang X and Tong Q X. 2010. Algorithm Research of Building Materials Emissivity Extract- ing. IGARSS 2010, Honolulu HI: 3350-3353 DOI: 10.1109/ IGARSS.2010.5650637.
  • 10Zhang R H. 2009. Models and field experiments for quantitative thermal infrared remote sensing. Beijing: Science Press: 97 100.

同被引文献9

  • 1张继贤,李德仁.影像纹理的多标度分形分析[J].武汉测绘科技大学学报,1995,20(2):106-111. 被引量:3
  • 2孙小芳,卢健,王晖.基于分形的城市地面亮温与植被研究[J].武汉大学学报(信息科学版),2006,31(2):116-119. 被引量:1
  • 3I.am N. An Evaluation of Fractal Methods for Characterizing Image Complexity [J]. Cartography and Geographic Information Science, 2002, 29 (1) 25-35.
  • 4Weng Q, Lu D, Schubring J. Estimation of Land Surface Temperature-Vegetation Abundance Relationship for Urban Heat Island Studies[J]. Remote Sensing of Environment, 2004, 89(4) : 467-483.
  • 5Weng Q. The Spatial Variations of Urban Land Sur{ace Temperatures: Pertinent Factors, Zoning Effect, and Seasonal Variability[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2008, 1(2): 154-166.
  • 6Weng Q. Fractal Analysis of Satellite-Detected Ur ban Heat lsland Effect[J]. Photogrammetric Engineering and Remote Sensing, 2003, 69(5): 555-566.
  • 7Cristianini N, Shawe-Taylor J. An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods[M]. Cambridge.. Cambridge University Press, 2000.
  • 8申维.利用“p100/q100”律对胶东地区金矿资源潜力估计[J].地学前缘,2001,8(4):463-466. 被引量:4
  • 9韩思奇,王蕾.图像分割的阈值法综述[J].系统工程与电子技术,2002,24(6):91-94. 被引量:330

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部