期刊文献+

二维主成分分析在乳腺钼靶X线片钙化点感兴趣区域提取中的应用

Extracting calcification ROIs in mammograms using 2DPCA
下载PDF
导出
摘要 目的针对乳腺钼靶X线影像,将基于二维主成分分析(Two-Dimensional Principal ComponentAnalysis,2DPCA)的方法提取的图像特征用于乳腺感兴趣区域的自动提取,实现计算机辅助检测乳腺X线影像中微钙化点的前期预处理阶段。方法对乳腺图像进行预处理,通过改进的2DPCA方法提取乳腺图像特征,利用边缘检测算法对乳腺图像进行边缘特征提取,最后利用神经网络分类器提取乳腺感兴趣区域。结果实验结果表明该方法可以得到95%的阳性检出率。结论综合运用二维主成分分析方法、边缘特征提取方法和神经网络进行乳腺感兴趣区域提取,准确率更高。 Objective In order to preprocess mammograms for diagnosing the early cases of breast cancer and realize the computer-aided detection of micro-calcifications in mammograms,this paper presented a method based on two-dimensional principal component analysis(2DPCA) to extract the region of interests(ROI) automatically.Methods First we preprocessed the mammograms,and then extracted mammography features by 2DPCA method and edge-detection algorithm.Finally,ROI was extracted by neural network classifier.Results The results showed that we obtained better positive detection ratio with this method.Conclusion Our method could obtain better extraction effect by integrating 2DPCA algorithm,edge-detection algorithm and neural network.
出处 《济宁医学院学报》 2011年第5期327-330,共4页 Journal of Jining Medical University
关键词 二维主成分分析 神经网络 感兴趣区域 Two-Dimensional Principal Component Analysis Neural network Region of interests
  • 相关文献

参考文献7

二级参考文献17

  • 1李洁,高新波,焦李成.基于克隆算法的网络结构聚类新算法[J].电子学报,2004,32(7):1195-1199. 被引量:24
  • 2李树楠,万柏坤,马振鹤,王瑞平.基于小波变换的乳腺X线影像微钙化点感兴趣区域提取新技术[J].生物医学工程学杂志,2005,22(2):360-362. 被引量:7
  • 3Yuan X, Shi PC. Physics Based Contrast Marking and Inpainting Based Local Texture Comparison for Clustered Micro-calcification Detection. MIC-CAI(2), 2004,32(4):847 - 855.
  • 4LiLY ChenWN.A robust and completely deterministic method for gray level picture thresholding[J].模式识别和人工智能,1993,6(3):235-241.
  • 5博斯.吴镇扬,周琳译.数字信号与图像处理.北京高等教育出版社,2006,7:665-670.
  • 6Jianping F, David K Y Y. Automatic image segmentation by integrating color-edge extraction and seeded region growing[ J ]. Image Processing, IEEE Trans, 2001,10(10) :1454-1466.
  • 7Canny J. A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986,8(6):679 - 698.
  • 8Wang Xiao-peng, Luo Jin-wen. Edge detection based on regulated morphological gradient [ A ]. Proceedings of ICCEA04[C]. ICCEA ,2004. 419 -422.
  • 9S Mallat, S Zhong. Characterization of signals from multiscale edges [ J ]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1992,14 ( 7 ) : 710 - 732.
  • 10Hanmandlu M, See J, Vasikarla S. Fuzzy edge detector using entropy optimization[ A ]. Proceedings of ITCC04[C]. ITCC ,2004.665 -670.

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部