摘要
结合重复使用助推器再入飞行的导航需求,为保证在高动态环境下能够实现高精度、高可靠的再入导航,采用改进的强跟踪UKF进行导航误差的估计与跟踪.针对基于卡尔曼滤波残差检验的传统故障检测方法的不足,提出了改进的故障检测方法进行导航设备故障检测,并采用平滑窗口实现故障信息的有效隔离.典型故障条件下的仿真分析表明,所提出的强跟踪滤波方法能够有效地估计和跟踪导航误差的变化,改进的故障检测方法能够准确地检测出导航设备的故障信息,并能够有效地对故障进行隔离,保证导航系统具有较高的精度和可靠性.
Based on the reentry navigation requirements of a reusable boost vehicle, in order to ensure reentry navigation with high precision and high reliability in the highly dynamic environment, a kind of improved strong tracking unscented Kalman Filter was used for state estimation and tracking. Considering to the shortcomings of the traditional fault detection method resulting from the residual errors of the Kalman filter, a kind of novel fault detection method was developed for checking the working state of each navigation sensor. The effective isolation of fault situation was carried out using a smooth window. The simulation results under typical failure distributions validate the satisfactory fault-tolerant performance of the method. The improved fault detection method can accurately detect fault information of the navigation device and isolate the fault effectively, ensuring the high precision and reliability of the navigation system.
出处
《哈尔滨工程大学学报》
EI
CAS
CSCD
北大核心
2011年第10期1295-1299,共5页
Journal of Harbin Engineering University
基金
国家863计划基金资助项目(2009AA7020354)
关键词
强跟踪UKF
故障检测
故障隔离
残差检验
strong tracking UKF
fault detection
fault isolation
residual checking