期刊文献+

基于强跟踪UKF的导航系统故障检测方法 被引量:8

The fault-detection method of a navigation system based on a strong tracking unscented kalman filter
下载PDF
导出
摘要 结合重复使用助推器再入飞行的导航需求,为保证在高动态环境下能够实现高精度、高可靠的再入导航,采用改进的强跟踪UKF进行导航误差的估计与跟踪.针对基于卡尔曼滤波残差检验的传统故障检测方法的不足,提出了改进的故障检测方法进行导航设备故障检测,并采用平滑窗口实现故障信息的有效隔离.典型故障条件下的仿真分析表明,所提出的强跟踪滤波方法能够有效地估计和跟踪导航误差的变化,改进的故障检测方法能够准确地检测出导航设备的故障信息,并能够有效地对故障进行隔离,保证导航系统具有较高的精度和可靠性. Based on the reentry navigation requirements of a reusable boost vehicle, in order to ensure reentry navigation with high precision and high reliability in the highly dynamic environment, a kind of improved strong tracking unscented Kalman Filter was used for state estimation and tracking. Considering to the shortcomings of the traditional fault detection method resulting from the residual errors of the Kalman filter, a kind of novel fault detection method was developed for checking the working state of each navigation sensor. The effective isolation of fault situation was carried out using a smooth window. The simulation results under typical failure distributions validate the satisfactory fault-tolerant performance of the method. The improved fault detection method can accurately detect fault information of the navigation device and isolate the fault effectively, ensuring the high precision and reliability of the navigation system.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2011年第10期1295-1299,共5页 Journal of Harbin Engineering University
基金 国家863计划基金资助项目(2009AA7020354)
关键词 强跟踪UKF 故障检测 故障隔离 残差检验 strong tracking UKF fault detection fault isolation residual checking
  • 相关文献

参考文献9

  • 1赵汉元.飞行器再入动力学与制导[M].长沙:国防科技大学出版社,1997.
  • 2VOEGT S, TAVA M, CHLOTFERER M. The PHOENIX navigation system for automatic landing [ C l// 10th Saint Petersburg International Conference on Integrated Navigation Systems. Saint Petersburg, Russia, 2003 : 1-8.
  • 3soTro E, BRANCO J, SAVINO R. PHOEBUS: GNC design and performance assessment for super orbital Reentry [C]// 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference, AIAA. Bremen, Germany,2009: 1-13.
  • 4JOW D, SHIH L. Navigation integration using the fuzzy strong tracking unscented Kalman filter [ J ]. The Journal of Navigation, 2009,62 : 303-322.
  • 5JULIER, UHLMANN J, DURRANT F. A new approach for fil- tering nonlinear systems [ C ]//Proceedings of the American Control Conference. New York, U. S. A, 1995 : 1628-1632.
  • 6罗锦,孟晨,苏振中.故障诊断技术的发展和展望[J].自动化与仪器仪表,2003(2):1-2. 被引量:16
  • 7SCHLOTTERER M, THEIL S, WIEGAND M, et al. Navi- gation system for auto-landing of RLV [ C]// 52nd Interna- tional Astronautical Congress IAF. Toulouse, France, 2001 : 1-11.
  • 8崔乃刚,韩鹏鑫,穆荣军.基于微小型传感器的惯性/卫星/天文组合导航方法[J].中国惯性技术学报,2008,16(1):68-72. 被引量:9
  • 9付梦印,邓志红,张继伟.Kalman滤波理论及其在组合导航中的应用[M].北京:科学出版社,2003.

二级参考文献10

共引文献44

同被引文献59

引证文献8

二级引证文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部