期刊文献+

改进的KNN-SMOreg算法及在铀矿床典型蚀变矿物赤铁矿含量预测中的应用 被引量:2

Improved KNN-SMOreg Algorithm and Its Application in Predicting the Amount of Hematite from Uranium
下载PDF
导出
摘要 赤铁矿作为铀矿床蚀变带中一种典型的蚀变矿物,在铀矿勘测过程中具有十分重要的指矿作用.传统的建模方法都以同样的概率来处理每个特征参数的重要性,但在实际建模过程中各个参数的重要性是有差别的,忽略此因素会直接影响赤铁矿预测的精度.针对此问题,本文提出一种基于属性关联的加权K近邻和支持向量机的新混合模型WKNN-SMOreg,该模型通过属性关联的方式来赋予赤铁矿各特征参数权值,以此来降低关联程度较低的特征参数在预测过程中所引起的误差.实验结果表明:与K近邻、支持向量机、简单K近邻与支持向量机的混合模型KNN-SMOreg的预测方法相比,本文提出的WKNN-SMOreg方法提高了赤铁矿预测结果的精度,降低了无用信息在预测过程中所造成的负面影响.这说明属性关联加权技术在蚀变矿物含量预测中具有一定的应用价值. Hematite,as a typical alteration mineral,plays a very important role in uranium exploration.Traditional modeling method usually treats every feature with the same probability.However,this does not hold in many real world applications,which may also cause the reduction of the accuracy of prediction.We propose a novel method called WKNN-SMOreg,which weights the features according to the association of their attributes on the hybrid of KNN and SMOreg.In this way,the error caused by the features with lower association will be reduced.The experiment results show,compared with KNN,SVM and KNN-SMOreg,the novel method improves the accuracy of prediction,and reduces the negative impact of the noise,which also implies that the new method can be well applied in the prediction of alteration minerals.
出处 《应用基础与工程科学学报》 EI CSCD 2011年第5期842-851,共10页 Journal of Basic Science and Engineering
基金 国家高技术研究发展(863)计划(项目编号2009AA12Z117) 教育部博士点基金(编号:20090145110007)
关键词 属性关联 属性加权 光谱吸收特征参数 铀矿床 赤铁矿 预测 attribute association attribute weighting spectral absorption feature parameters uranium deposit hematite prediction
  • 相关文献

参考文献9

  • 1闵茂中,吴俊奇,戚成云,周云生.水辐射分解促进铀矿床围岩赤铁矿化蚀变的实验研究[J].铀矿地质,1992,8(1):25-28. 被引量:4
  • 2陈文霞,陈安升,蔡之华.基于高光谱吸收特征参数的分类研究[J].计算机工程与应用,2008,44(28):230-232. 被引量:15
  • 3孙斌,周云龙.基于支持向量机的气液两相流流型识别新方法[J].应用基础与工程科学学报,2007,15(2):209-216. 被引量:5
  • 4何建国,毛玉仙,李建中,汪昌亮,祝民强,冯明月,戎嘉树,饶明辉.花岗岩型铀矿床水云母化的诊断性光谱特征[J].铀矿地质,2008,24(4):250-256. 被引量:6
  • 5Li C Q ,Jiang L X, Wu J. Distance and attribute weighted K-nearest-neighbor and its application in reservoir porosity prediction[ J]. Journal of Information and Computational Science,2009,6 (2) :845-851.
  • 6Jiang L X,Wang D,Cai Z H, et al. Scaling up the accuracy of K-nearest-neighbor classifiers: a naive-bayes hybrid[ J ]. International Journal of Computers and Applications ,2009,31 ( 1 ) :36-43.
  • 7Platt J C. Fast training of support vector machines using sequential minimal optimization [ A ]. In: Scholkopf B, Burges C, Smola A, eds. Advances in Kernel methods : support vector machines [ C ]. Cambridge: MIT Press, 1998.
  • 8w Shevade S K, Keerthi S S, Bhattacharyya C. Improvements to SMO algorithm for SVM regression [ J ]. IEEE Transactions on Neural Networks, 2000,11 ( 5 ) : 1188-1194.
  • 9Witten I H ,Eibe F. Data mining:practical machine learning tools and techniques( second edition) [ M]. San Francisco: Morgan Kaufmann Press,2005.

二级参考文献28

共引文献24

同被引文献11

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部