期刊文献+

一类椭圆曲线二元伪随机序列性质分析

On a Family of Pseudorandom Binary Sequences from Elliptic Curves
下载PDF
导出
摘要 构造具有良好性质的伪随机序列一直是密码学研究的热点问题之一。基于有限域上的椭圆曲线构造了一类二元伪随机序列,并利用椭圆曲线上的指数和计算了该类序列的一致分布测度和k阶相关测度。结果表明该类序列具有较小的一致分布测度和k阶相关测度。 It is one of the hot-spots in cryptography to construct pseudorandom sequences with good properties.This paper presents a family of pseudorandom binary sequences constructed from elliptic curves over finite fields.With the help of exponential sums on elliptic curves,the well-distribution measure and correlation measure of order k are computed.The results show that both of them are small.
出处 《信息工程大学学报》 2011年第5期521-525,共5页 Journal of Information Engineering University
基金 国家自然科学基金资助项目(61003291) 国家973计划资助项目(2007CB807902) 全国优秀博士学位论文作者专项基金(FANEDD-2007B74)
关键词 伪随机序列 椭圆曲线 指数和 一致分布测度 k阶相关测度 pseudorandom sequence elliptic curve exponential sums well-distribution measure correlation measure of order k
  • 引文网络
  • 相关文献

参考文献13

  • 1Gong G, Berson T, Stinson D. Elliptic curve pseudorandom sequence generator [ EB/OL]. [ 2010-06-10 ]. http:// www. cacr. math. uwaterloo, ca. , Technical Reports, CORR1998-53,1998.
  • 2Beelen P H T, Doumen J M. Pseudorandom sequences from elliptic curves[ C ]//Finite Fields with Applications to Coding Theory, Cryptography and Related Areas. 2002: 37-52.
  • 3Hess F, Shparlinski I E. On the linear complexity and multidimensional distribution of congruential generators over elliptic curve[ J]. Designs, Codes and Cryptography, 2005,35 ( 1 ) :111-117.
  • 4Lange T, Shparlinski I E. Certain exponential sums and random walks on elliptic curves[ J]. Canad. J. Math, 2005,57 (2) : 338-350.
  • 5Gong G, Lam C. Linear recursive sequences over elliptic curves[ C ]//Proceedings of Sequences and Their Applications-SE- TA' 01. Berlin : Spring-Verlag, 2001 : 182-196.
  • 6Cruz M, Gomez D, Sadornil D. On the linear complexity of the Naor-Reingold sequence with elliptic curves[ J]. Finite Fields and Their Applications, 2010,16:329-333.
  • 7Mauduit C, Sarkozy A. On finite pseudorandom binary sequences I: measures of pseudorandomness, the Legendre symbol [ J]. Acta Arithmetica, 1997,82:365-377.
  • 8Goubin L,Mauduit C, Sarkfizy A. Construction of large families of pseudo-random binary sequences[ J]. Journal of Number Theory, 2004,106(1 ): 56-69.
  • 9Chen Zhixiong. Elliptic curve analogue of Legendre sequences[J]. Monatsh. Math. ,2008, 154:1-10.
  • 10Chen Zhixiong, Xiao Guozhen. 'Good' Pseudo-random binary sequences from elliptic curves[ EB/OL]. [ 2010-04-18 ]. ht- tp ://eprint. iacr. org/2007/275, pdf, 2007.
;
使用帮助 返回顶部