期刊文献+

对一种基于Euler-Fermat小定理的背包公钥系统的攻击 被引量:2

Attack against A Knapsack Public-Key System Based on Euler-Fermat's Theorem
下载PDF
导出
摘要 钟少君和李文锋提出了一种基于Euler-Fermat小定理实现的背包公钥密码系统,并声称其算法操作简易无需计算乘法逆元、有较强的安全性。文章提出了针对该系统的一种攻击,说明该系统并不安全。 A knapsack public-key system based on Euler-Fermat's theorem is introduced By Zhong Shaojun and Li Wenfeng,and that algorithm is claimed to be easy,more selure,and with no inverse multiplication.This paper proposes an attack against this knapsack public-keg system,and shows that this system is not secure.
出处 《信息工程大学学报》 2011年第5期532-534,共3页 Journal of Information Engineering University
关键词 背包公钥密码体系 欧拉-费尔玛小定理 低密度背包 knapsack public-key system Euler-Fermat's theorem low density knapsack
  • 相关文献

参考文献3

  • 1钟少君,李文锋.基于Euler-fermat小定理实现的背包公钥密码体系[J].江西理工大学学报,2007,28(1):40-41. 被引量:1
  • 2Lagarias J C, Odlyzko A M. Solving low-density subset sum problems[ J]. Assoc. Comput. Mach. , 1985,31 ( 1 ) :229 - 246.
  • 3Merkle R C, Hellman M E. Hiding Information and Signatures in Trapdoor knapsack [ J 1. Inform Theory, 1978, ( 24 ) :525-530.

二级参考文献5

  • 1谭显伦,阮永良.一种新的背包加强算法[J].电脑知识与技术(认证考试),2004(10M):49-52. 被引量:3
  • 2卢开澄.计算机密码学[M].北京:清华大学出版社,2000..
  • 3朱文余,孙奇.计算机应用密码基础[M].北京:科学出版社.2000.
  • 4Merkle R C,Hellman M E.Hiding Information and Signatures in Trapdoor knapsack[J].Inform Theory,1978,(24):525-530.
  • 5Bmce Schneier.APPlied Crytography,Protoco1s,algorithms,and source code in C[M].吴世忠,祝世雄译.北京:机械工出版社,2001.

同被引文献26

  • 1石井,吴哲,谭璐,王昊鹏,王娜.RSA数据加密算法的分析与改进[J].济南大学学报(自然科学版),2013,27(3):283-286. 被引量:26
  • 2王茜,倪建伟.一种基于RSA的加密算法[J].重庆大学学报(自然科学版),2005,28(1):68-72. 被引量:14
  • 3王保仓,胡予濮.高密度背包型公钥密码体制的设计[J].电子与信息学报,2006,28(12):2390-2393. 被引量:13
  • 4MERKLE R C,HELLMAN M E. Hiding information and signatures in trapdoor knapsacks [ J]. IEEE Trans on Information Theory, 1978,24(5) :525-530.
  • 5SHAMIR A. A polynomial-time algorithm for breaking the basic Merkle-Hellman cryptosystem[ J]. IEEE Trans on Information Theory, 1984,30(5) :699-704.
  • 6COSTER M J, JOUX A, LAMACCHIA B A, et al Improved low-density subset sum algorithms [ J ]. Computational Complexity, 1992,2(2) :111-128.
  • 7LAGARIAS J C. Knapsack public key cryptosystems and Diophantine approximation [ C ]//Proc of CRYPTO on Advances in Cryptology. New York : Plenum,1984:3 - 23.
  • 8WANG Bao-cang, WU Qian-hong, HU Yu-pu. A knapsack-based probabilistic encryption scheme [ J ]. Information Sciences, 2007 , 177(19) ;3981-3994.
  • 9WANG Bao-cang, HU Yu-pu. Quadratic compact knapsack public-key cryptosystem [ J ]. Computers & Mathematics with Applications,2010,59(1) :194-206.
  • 10ABOUD S J. An improved knapsack public key cryptography system [J]. International Journal of Internet Technology and Secured Trans,2011,3(3) :310-319.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部