摘要
为解决短期电力负荷预测中LSSVM模型的参数难以确定的问题,利用变尺度混沌算法优化LSSVM模型的惩罚因子和核函数参数,构建了MSC-LSSVM模型,并将其应用于湖南省隆回县地区电网各小时点的数据分析和预测中。结果表明,MSC-LSSVM模型避免了人为选择参数的盲目性,预测精度较高。
In order to overcome drawbacks of parameters selection of LSSVM model for short-term load forecasting, the mutative scale chaos (MSC) algorithm is developed to optimize two parameters of LSSVM model such as penalty factor and kernel function. And then the MSC-LSSVM model is established to predict each hour load of Longhui City in Hu nan Province. The results show that the proposed model avoids the blindness of man-made choice of parameters and has high prediction precision.
出处
《水电能源科学》
北大核心
2011年第11期186-188,76,共4页
Water Resources and Power
基金
国家自然科学基金资助项目(61074069)
关键词
最小二乘支持向量机
变尺度混沌算法
短期负荷
预测
优化
least square support vector machine
mutat ive scale chaos algorithm
short-term load
forecasting
optimization