摘要
设G是一个图,并设n,k,r,a和b是整数且满足k≥1,k≤a〈b和n≥3.对于G的给定的k-正则图H,如果G是K1,n-free图,且G的最小度至少是那么G有一个[a,b]-因子F使得E(H)∈E(F).类似地,也得到了关于图G有一个r-因子含有G中给定的k-正则子图的度条件.进一步,指出这些度条件是最佳的.
Let G be a graph, and let n, k, r, a and b be integers such that k ≥ 1, k ≤ a 〈 b and n 〉 3. For given k-regular subgraph H of G, if G is K1,n-free and the minimum degree of G is at least
then G has an [a, b]-factor F such that E(H) C E(F). Similarly, we also obtained a degree condition for graphs to have an r-factor containing a given k-regular subgraph of G. Furthermore, it is shown that the degree conditions are sharp.
出处
《应用数学学报》
CSCD
北大核心
2011年第6期1032-1045,共14页
Acta Mathematicae Applicatae Sinica