期刊文献+

含有给定k-正则子图的[a,b]-因子

[a,b]-factors Containing a Given k-regular Subgraph
原文传递
导出
摘要 设G是一个图,并设n,k,r,a和b是整数且满足k≥1,k≤a〈b和n≥3.对于G的给定的k-正则图H,如果G是K1,n-free图,且G的最小度至少是那么G有一个[a,b]-因子F使得E(H)∈E(F).类似地,也得到了关于图G有一个r-因子含有G中给定的k-正则子图的度条件.进一步,指出这些度条件是最佳的. Let G be a graph, and let n, k, r, a and b be integers such that k ≥ 1, k ≤ a 〈 b and n 〉 3. For given k-regular subgraph H of G, if G is K1,n-free and the minimum degree of G is at least then G has an [a, b]-factor F such that E(H) C E(F). Similarly, we also obtained a degree condition for graphs to have an r-factor containing a given k-regular subgraph of G. Furthermore, it is shown that the degree conditions are sharp.
出处 《应用数学学报》 CSCD 北大核心 2011年第6期1032-1045,共14页 Acta Mathematicae Applicatae Sinica
关键词 K-正则图 r-因子 [a r]-因子 度条件 k-regular graph, r-factor, [a, b]-factor, degree condition
  • 相关文献

参考文献8

  • 1Bondy J A, Murty U S R. Graph Theory with Applications. London: MacMillan, 1976.
  • 2Fan G. New Sufficient Conditions for Cycles in Graphs. J. Combin. Theory (Series B), 1984, 37: 221 227.
  • 3Matsuda H. Degree Conditions for the Existence of [k,k+l]-factors Containing a Given Hamiltonian Cycle. Australasian Journal of Combinatorics, 2002, 26:273-281.
  • 4Li Y, Cai M. A Degree Condition for a Graph to have [a,b]-factors. J. Graph Theory, 1998, 27:1 6.
  • 5Matsuda H. Degree Conditions for Hamiltonian Graphs to have [a,b]-factors Containing a Given Hamiltonian Cycle. Discrete Mathematics, 2004, 280:241-250.
  • 6Li J. A New Degree Condition for Graphs to have [a,bJ-factor. Discrete Mathematics, 2005, 290: 99 103.
  • 7Loveisz L. Subgraphs with Prescribed Valences. J. Combin. Theory, 1970, 8:391-416.
  • 8Ota K, Tokuda T. A Degree Condition for the Existence of Regular Factors in Kl,~-free Graphs. J. Graph Theory, 1996, 22:59-64.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部