期刊文献+

时滞脉冲抛物型微分方程解的存在性及其在种群动力学中的应用

Existence Theorem for Impulsive Parabolic Equations with Delay and Applications to the Population Model
原文传递
导出
摘要 本文研究了一类具有时滞的脉冲抛物型方程在Neumann边值条件下解的存在性问题,利用定义上下解对的方法,给出了一个新的解的存在性定理和比较原理.作为例子,当把这种方法应用到一种群模型中时,得到了该系统正平衡点全局吸引的新结果. In this paper, by means of a pair of lower-upper solution, a new existence theorem of solution under Neumann boundary condition for impulsive parabolic equations with delay is obtainied. As an example, when applicated to a population model, sufficient conditions are provided for global attractivity of the equilibrium for this system.
出处 《应用数学学报》 CSCD 北大核心 2011年第6期1068-1081,共14页 Acta Mathematicae Applicatae Sinica
基金 云南省教育厅科研基金(2010Y222)资助项目
关键词 脉冲抛物型方程 时滞 上下解对 impulsive parabolic equations delay lower-upper solution pair
  • 相关文献

参考文献10

  • 1Erbe L H, Freedman H I, Liu X Z, Wu/I H. Comparision Principles for Impulsive Parabolic Equations with Application to Models of Single Species Growth. J. Austra. Soc. (Series B), 1991, 32:382-400.
  • 2Cui B T, Han M A, Yang H Z. Some Sufficient Conditions for Oscillation of Impulsive Delay Hyperbolic Systems with Robin Boundary Conditions. Journal of Computational and Applied Mathematics, 2005, 180:365-375.
  • 3Gao W L, Wang J H. Estimates of Solutions of Impulsive Parabolic Equations under Neumann Boundary Condition. J. Math. Anal. Appl., 2003, 283:478-490.
  • 4Kirane M, Rogovchenko Y V. Comparison Results for Systems of Impulse Parabolic Equations with Applications to Population Dynamics. Nonlinear Anal. TMA, 1997, 28:263-276.
  • 5W N. On the Forced Oscillation of Solutions for Systems of Impulsive Parabolic Differential Equa- ms with Several Delays. Journal of Computational and Applied Mathematics, 2005, 181:46-57.
  • 6Li W N, Han M A, Meng F W. Necessary and Sufficient Conditions for Oscillation of Impulsive Parabolic Differential Equations with Delays. Applied Mathematics Letters, 2005, 18:1149-1155.
  • 7I Redlinger R. Exitence Theorems for Semiliner Parabolic Systems with Functional. Nonlinear Anal. TMA, 1984, 8:67-682.
  • 8Mackey M C, Glass L. Oscillation and Chaos in Physiological Control System. Science, 1977, 197: 287-289.
  • 9Redlinger R. On Volterra'S Population Equation with Diffusion. SIAM J. Math. Anal., 1985, 16: 135-142.
  • 10Freedman A. Partial Differential Equations of Parabolic Type. Prentice Hall, Englewood Cliffs, N J, 1964.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部