期刊文献+

自同构群阶为4p^2qr的有限群 被引量:2

Finite groups with automorphism group of order 4p^2qr
下载PDF
导出
摘要 设G是有限群幂零群,给出了方程|Aut(G)|=4p2qr的全部解.其中p,q,r为任意不同的素数,且2<p<q<r. Let G be a finite nilpotent group,and then all solutions G of |Aut(G)|=4p2qr were given,where p,q and r were distince prime numbers,and 2pqr.
出处 《湖北大学学报(自然科学版)》 CAS 北大核心 2011年第2期224-226,229,共4页 Journal of Hubei University:Natural Science
基金 国家自然科学基金(10971054)资助
关键词 幂零群 自同构群 群阶 nilpotent group automorphism group order of a group
  • 相关文献

参考文献4

二级参考文献9

  • 1李世荣.Automorphism Groups of Some Finite Groups[J].Science China Mathematics,1994,37(3):295-303. 被引量:9
  • 2LI SHIRONG.FINITE GROUPS WHOSE AUTOMORPHISM GROUP HAS ORDER CUBEFREE[J].Chinese Annals of Mathematics,Series B,1997,18(3):301-308. 被引量:5
  • 3李世荣,中国科学.A,1993年,23卷,12期,1276页
  • 4陈贵云,西南师范大学学报,1990年,15卷,1期,21页
  • 5黄安平,科学通报,1989年,34卷,3期,235页
  • 6俞曙霞,广西大学学报,1993年,18卷,1期,6页
  • 7班桂宁,数学学报,1992年,35卷,4期,750页
  • 8俞曙霞,广西大学学报,1994年,19卷,1期,10页
  • 9CHU Xuelei, LI Xiaolin, XU Jiuhua and LIU Jianming1. The Research Center of Mineral Resources Exploration , Chinese Academy of Sciences , Beijing 100101, China ,2. Institute of Geology , Chinese Academy of Sciences , Beijing 100029, China ,3. Institute of High Energy Physics , Chinese Academy of Sciences , Beijing 100817 , China ,4. Beijing University of Science and Engineering , Beijing 100083, China Corresponding author.Patterns of platinum-group elements in mantle peridotite, granulite xenoliths and basalt in Hannuoba[J].Chinese Science Bulletin,1999,44(18):1676-1681. 被引量:10

共引文献21

同被引文献19

  • 1李世荣.Automorphism Groups of Some Finite Groups[J].Science China Mathematics,1994,37(3):295-303. 被引量:9
  • 2徐明曜.有限群论导引[M].北京:科学出版社,1999.
  • 3张远达.有限群构造[M].北京:科学出版社,1984.
  • 4Iyer H K. On solving the equation Aut(X) = G [J]. RockyMauntain Math,1979,19A(4) :653 -670.
  • 5MacHale D. Some finite groups which are rarely automorphismgroup - II [ J]. Proc Royal Irish Acad,1983,83A(2): 189 -196.
  • 6Robinson D J S. A couree in the theorey of groups[ M]. NewYork : Springer - Verlag,2001.
  • 7Li S R. Finte groups with automorphism group of order 23p[J]. Proc Royal Irish Acad,1994,94A(2) :193 -205.
  • 8Sander P R. The central automorphisms of a finite group[ J].London Math Soc,1969,44A(2) :225 -228.
  • 9Iyer H K. On solving the equation Aut(X) = G [J]. Rocky Mauntain Math, 1979,19A (4) :653 - 670.
  • 10Machale D. Some finite groups which are rarely automorphism groups -I [J]. Proc Royal Irish Acad,1983,83A(2):189 - 196.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部