期刊文献+

加权特征自动图像标注方法 被引量:1

A Weighted Feature Based Automatic Image Annotation
原文传递
导出
摘要 提出了一种基于加权特征的图像自动标注方法.该方法首先采用加权特征聚类算法对图像区域进行语义聚类,这种聚类算法根据图像特征的统计分布来计算特征与类别的相关度,增加相关度高的特征的权重,避免聚类算法被弱相关或不相关的特征所支配;然后,根据训练集中样本图像的标注情况建立图像区域与语义关键字的关联;最后,在未标注图像区域给定时,计算每个语义关键字的条件概率,将条件概率最大的语义概念作为图像的标注.在Corel图像库的数据集上验证了新方法的有效性. An automatic image annotation method based on weighted feature is proposed. Firstly, a weighted feature clustering algorithm is employed on the semantic concept clusters of the image regions. For a given cluster, we determine relevant features based on their statistical distribution and assign greater weights to relevant features as compared to less relevant features. In this way the computing of clustering algorithm can avoid dominated by trivial relevant or irrelevant features. Then, the relationship between clustering regions and semantic concepts is established according to the labeled images in the training set. Under the condition of the new unlabeled image regions, we calculate the conditional probability of each semantic keyword and annotate the new images with maximal conditional probability. Experiments on the Corel image set show the effectiveness of the new algorithm.
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2011年第5期6-9,共4页 Journal of Beijing University of Posts and Telecommunications
基金 国家自然科学基金项目(90920006) 河南省控制工程重点学科开放实验室开放基金项目(KG2009-08) 河南省教育厅自然科学基金项目(2011B520017) 河南理工大学青年科学基金项目(Q2011-33)
关键词 加权特征 图像自动标注 聚类 weighted feature automatic image annotation clustering
  • 相关文献

参考文献9

  • 1Liu Ying, Zhang Dengsheng, Lu Goujun, et al. A survey of content-based image retrieval with high-level semantics [ J]. Pattern Recognition, 2007, 40( 1 ) : 262-282.
  • 2Julia Vogel, Bernt Schiele. Semantic modeling of natural scenes for content-based image retrieval[J]. International Journal of Computer Vision, 2007, 72(2) : 133-157.
  • 3Wang Changhu, Zhang Lei, Zhang Hongjiang. Learning to reduce the semantic gap in web image retrieval and an- notation [ C ~ //J ACM SIGIR 2008. Singapore: ACM Press, 2008: 355-362.
  • 4GAO Yan-Yu,YIN Yi-Xin,UOZUMI Takashi.A Hierarchical Image Annotation Method Based on SVM and Semi-supervised EM[J].自动化学报,2010,36(7):960-967. 被引量:8
  • 5Gao Y L, Fan J P, Xue X Y, et al. Automatic image an- notation by incorporating feature hierar-chy and boosting to scale up SVM classifiers [ C]//Proceedings of the 14'h ACM International Conference on Multimedia. Santa Bar- bara: ACM Press, 2006: 901-910.
  • 6Jeon J, Lavrenko V, Manmatha R. Automatic image an- notation and retrieval using cross-media relevance models [ C ] // ACM SIGIR. Toronto: ACM Press, 2003: 119-126.
  • 7Feng S L, Manmatha R, Lavrenko V. Multiple Bernoulli rel- evance models for image and video annotation [ C ] //Pro- ceedings of the IEEE Conf Computer Vision and Pattern Recognition. Washington : IEEE Press, 2004 : 1002-1009.
  • 8Lavrenko V, Manmatha R, Jeon J. A model for learning the semantics of pictures [ C ]//J Proceedings of the Neural Information Processing Systems. Vancouver, Whistler: MIT Press, 2004 : 553-560.
  • 9Chen Yixin, James Z Wang. Image learning and reasoning with regions [ J ] chine Learning Research, 2004, 5 (8) : categorization by ~ Journal of Ma- 913-939.

二级参考文献18

  • 1Carneiro G, Chan A B, Moreno P J, Vasconcelos N. Supervised learning of semantic classes for image annotation and retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(3): 394-410.
  • 2Mori Y, Takahashi H, Oka R. Image-to-word transformation based on dividing and vector quantizing images with words. In: Proceedings of the International Workshop on Multimedia Intelligence Storage and Retrieval Management. Orlando, USA: Springer, 1999. 1-9.
  • 3Zhang Q N, Izquierdo E. Adaptive salient block-based image retrieval in multi-feature space. Image Communication, 2007, 22(6): 591-603.
  • 4Jeon J, Lavrenko V, Manmatha R. Automatic image anno- tation and retrieval using cross-media relevance models. In: Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Informaion Retrieval. Toronto, Canada: ACM, 2003. 119-126.
  • 5Liu J, Wang B, Lu H, Ma S. A graph-based image annotation framework. Pattern Recognition Letters, 2008, 29(4): 407-415.
  • 6Kokkinos I, Maragos P. Synergy between object recognition and image segmentation using the expectation-maximization algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(8): 1486--1501.
  • 7Jung J J. Exploiting semantic annotation to supporting user browsing on the web. Knowledge-Based Systems, 2007, 20(4): 373-381.
  • 8Fan J P, Gao Y L, Luo H Z, Xu G Y. Statistical modeling and conceptualization of natural images. Pattern Recognition, 2005, 38(6): 865-885.
  • 9Spirkovska L. A Summary of Image Segmentation Techniques, NASA Technical Memorandum 104022, Ames Research Center, USA, 1993.
  • 10Blekas K, Likas A, Galatsanos N, Lagaris I. A spatiallyconstrained mixture model for image segmentation. IEEE Transactions on Neural Network, 2005, 16(2): 494-498.

共引文献7

同被引文献20

  • 1芮晓光,袁平波,何芳,俞能海.一种新的基于语义聚类和图算法的自动图像标注方法[J].中国图象图形学报,2007,12(2):239-244. 被引量:9
  • 2LAVRENKO V,JEON J. Automatic image annotation and retrieval using cross-media relevance models[A].New York,USA:ACM,2003.119-126.
  • 3WANGKE GANG,QILI YING. Classification and appli-cation of images based on color texture feature[A].Shanghai,China:IEEE,2011.284-290.
  • 4KE MINVI,LI SHUAIHAO,SUN YONG. Re-search on similarity comparison by quantifying grey histo-gram based on multi-feature in CBIR[A].Lushan,China:IEEE,2012.2318-2320.
  • 5MOHAMED MAHER,BEN ISMAIL. Image database categorization based on a novel probability clustering and feature weighting algorithm[A].Haikou,China:IEEE,2012.122-127.
  • 6DU GENYUANA,TIAN SHENGLI,LIU YE. A modi-fied fuzzy c-means algorithm in remote sensing image segmentation[A].Wuhan,Chi-na:IEEE,2009.447-450.
  • 7SIVIC J,RUSSELL B C. Discovering objects and their location in images[A].San Diego,California:IEEE Computer Society,2005.370-377.
  • 8DUYGULU P,BARNARD K,FORSYTH D. Object rec-ognition as machine translation[J].{H}Lecture Notes in Computer Science,2002,(01):97-112.
  • 9JEON J,MANMATHA R. Automatic image annotation and retrieval using cross-media relevance models[A].Toronto,Canada:ACM,2003.119-126.
  • 10RAMANI G K,ASSUDANI T. Tag recommendation for photos:Stanford CS229 Class Project[R].Stanford,USA:Stanford University,2009.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部