期刊文献+

基于冲突判定的混杂Petri网模型行为分析 被引量:1

Model Behavior Analysis of HPN Based on Conflict Decision and Elimination
下载PDF
导出
摘要 为了分析基本混杂Petri网模型行为,提出了基本混杂Petri网各迁移间的冲突判定定理,讨论了消解策略,并给出了基于冲突判定和消解的基本混杂Petri网模型行为分析算法。理论分析证明了所提出定理的正确性,实例分析和比较说明了所提出算法的有效性。 To analyse the model behavior of hybrid petri nets(HPN), the theorem to determine the conflict of a HPN is proposed , and the method to eliminate conflict is developed. A model behavior analysis algorithm for HPN based on conflict decision and elimination is presented. Through analysis and case study, the effectiveness of the developed approach and algorithm are illustrated.
出处 《广西师范学院学报(自然科学版)》 2011年第3期77-81,共5页 Journal of Guangxi Teachers Education University(Natural Science Edition)
基金 国家自然科学基金项目(60864001) 广西自然科学基金资助项目(0991105) 广西教育厅科研项目(200807MS113)
关键词 混杂PETRI网 冲突 消解 模型行为分析 hybrid petri nets conflict elimination model behavior analysis
  • 相关文献

参考文献10

  • 1吴锋,刘文煌,郑应平.混杂系统研究综述[J].系统工程,1997,15(2):1-7. 被引量:13
  • 2M ALLAM, H ALLA. Modeling and Simulation of an Electronic Component Manufacturing System Using Hybrid Petri Nets[ J ]. IEEE Transanctions on semiconductor manufacturing, 1998,11 (3) : 374-383.
  • 3F BALDUZZI, A GIUA ,G MENGA. First-Order Hybrid Petri Nets: a Model for Optimization and Control[J]. IEEE Transactions On Robotics And Automation, 2000, 16(14) :382-399.
  • 4M GRIBAUDO. Model-checking based on Fluid Petri Nets for the Temperature Control system of the ICARO Co-genera- tive plant[A], International Conference on Computer Safety, Reliability and Security ICl. LNCS2434:Springer Verlag, 2002:273-283.
  • 5H MATSUNO, Y TANAKA. Biopathways Representation and Simulation on Hybrid Functional Petri Net. In Silico Biolo- gy [J]. 2003,3(3): 389-404.
  • 6JULIA S, DE OLIVEIRA F F. A p-time hybrid Petri net model for the scheduling problem of workflow management sys- tems[A]. Systems, Man and Cybernetics[C]. Hague: IEEE Press, 2004 : 4947-4952.
  • 7DI FEBBRARO A,GIGLIO, D SACCO N. rban traffic control structure based on hybrid Petri nets. IEEE Transactions on Intelligent Transportation Systems, 2004,5 (4) : 224-237.
  • 8G J TSINARAKIS, N C . Tsourveloudis. Modeling, Analysis, Synthesis,and Performance Evaluation of Multioperational Production Systems with Hybrid Timed Petri Nets[J ]. IEEE Transactions On Automation and Engineering, 2006,3(1) :29-46.
  • 9廖伟志,古天龙.区间速率连续Petri网的有效冲突及其消解[J].计算机科学,2006,33(10):221-224. 被引量:7
  • 10周航,黄志球,胡军,祝义.基于Time Petri Nets的实时系统资源冲突检测[J].计算机研究与发展,2009,46(9):1578-1585. 被引量:6

二级参考文献31

  • 1廖伟志,古天龙.区间速率连续Petri网的有效冲突及其消解[J].计算机科学,2006,33(10):221-224. 被引量:7
  • 2宋巍,窦万春,刘茜萍.时间约束Petri网及其可调度性分析与验证[J].软件学报,2007,18(1):11-21. 被引量:21
  • 3Murata T. Petri nets: Properties, analysis and applications [J]. Proceedings of the IEEE, 1989, 77(4) : 541-580.
  • 4Ghezzi C, Mandrioli D, Morasea S, et al. A general way to put time in Petri nets[J].ACM SIGSOFT Software Engineering Notes, 1989, 14(3): 60-66.
  • 5Berthomieu B, Diaz M. Modeling and verification of time dependent systems using time Petri nets [J]. IEEE Trans on Software Engineering, 1991, 17(3): 259-272.
  • 6Tsai J J P, Yang S J, Chang Y H. Timing constraint Petri nets and their applications to schedulability analysis of real- time system specifications [J]. IEEE Trans on Software Engineering, 1995, 21(1): 32-49.
  • 7Zuberek W M. Performance evaluation of concurrent systems using timed Petri nets [C] //Proc of the 1985 ACM 13th Annual Conference on Computer Science. New York: ACM, 1985:326-329.
  • 8Ciardo G, German R, Lindemann C. A characterization of the stochastic process underlying a stochastic Petri net [J]. IEEE Trans on Software Engineering, 1994, 20(7) : 506-515.
  • 9Juan E Y T, Tsai J J P, Murata T, et al. Reduction methods for real-time systems using delay time Petri nets [J]. IEEE Trans on Software Engineering, 2001, 27(5): 422-448.
  • 10Merlin P M, Farber D J. Recoverability of communication protocols: Implications of a theoretical study[J]. IEEE Trans on Communications, 1976, 24(9) : 1036-1043.

共引文献21

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部