摘要
We present a new algorithm for nesting problems.Many equally spaced points are set on a sheet,and a piece is moved to one of the points and rotated by an angle.Both the point and the rotation angle constitute the packing attitude of the piece.We propose a new algorithm named HAPE(Heuristic Algorithm based on the principle of minimum total Potential Energy) to find the optimal packing attitude at which the piece has the lowest center of gravity.In addition,a new technique for polygon overlap testing is proposed which avoids the time-consuming calculation of no-fit-polygon(NFP).The detailed implementation of HAPE is presented and two computational experiments are described.The first experiment is based on a real industrial problem and the second on 11 published benchmark problems.Using a hill-climbing(HC) search method,the proposed algorithm performs well in comparison with other published solutions.
We present a new algorithm for nesting problems. Many equally spaced points are set on a sheet, and a piece is moved to one of the points and rotated by an angle. Both the point and the rotation angle constitute the packing attitude of the piece. We propose a new algorithm named HAPE (Heuristic Algorithm based on the principle of minimum total Potential Energy) to find the optimal packing attitude at which the piece has the lowest center of gravity. In addition, a new technique for polygon overlap testing is proposed which avoids the time-consuming calculation of no-fit-polygon (NFP). The detailed implementation of HAPE is presented and two computational experiments are described. The first experiment is based on a real industrial problem and the second on 11 published benchmark problems. Using a hill-climbing (HC) search method, the proposed algorithm performs well in comparison with other published solutions.