期刊文献+

具有捕获的Beddington-DeAngelis功能性反应捕食-食饵模型极限环的存在唯一性

Existence and Uniqueness of Limit Cycles of the Predator-prey System with Beddington-DeAngelis Functional Response and Harvesting
下载PDF
导出
摘要 研究具有捕获的Beddington-DeAngelis功能性反应捕食-食饵模型。通过变量变换,将系统转换成一个性质更好的Gause型捕食-食饵模型,在适当条件下得到极限环的存在唯一性结果,补充T.K.Kar的结果。 A predator-prey systems with Beddington-DeAngelis functional response and harvesting is studied.Through the change of variables,we transform the predator-prey system into a Gause-type predator-prey system.As a result,the existence and uniqueness of limit cycles of the system can be solved.Our results supplement and complement the results of T.K.Kar.
出处 《龙岩学院学报》 2011年第5期1-3,8,共4页 Journal of Longyan University
基金 福建省科技创新平台计划项目(2009J1007)
关键词 功能性反应 极限环 存在性 唯一性 捕获 functional response limit cycles existence uniqueness harvesting
  • 相关文献

参考文献5

  • 1T. K. Kar, U. K. Pahari, Modeling and anaysis of a prey-predator system with stage-structure and harvesting [J]. Nonlinear Anal, 2007,8 ( 2 ) : 601-609.
  • 2R. S. Cantrell, C. Cosner, On the dynamics of predator-prey models with the Bedd ington-DeAngelis functional response[J]. J. Math. Anal. Appl. 2001, 257(1): 206-222.
  • 3T. W. Hwang, Uniqueness of limit cycle for Gause- type predator-prey systems [J], J. Math. Anal. Appl. 1999, 238(1): 179-195.
  • 4王霞,任鹏.一类带有Beddington-DeAngelis反应和收获时滞的食饵-捕食者系统的分析[J].数学的实践与认识,2009,39(14):82-87. 被引量:4
  • 5D. Xiao, S. Ruan, Bogdanov-Takens bifurcations in predator-prey systems with constant rate harvesting [J]. Fields Inst. Commun. 1999, 21: 493-506.

二级参考文献2

  • 1F. Brauer,A. C. Soudack. Stability regions in predator-prey systems with constant-rate prey harvesting[J] 1979,Journal of Mathematical Biology(1):55~71
  • 2F. Brauer,A. C. Soudack. Stability regions and transition phenomena for harvested predator-prey systems[J] 1979,Journal of Mathematical Biology(4):319~337

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部