摘要
用重心插值配点法对轴向均布荷载下压杆稳定问题进行了研究。采用重心Lagrange插值多项式建立未知函数的微分矩阵,采用配点法将压杆稳定问题的控制方程表示为代数方程组。通过求解代数方程组系数矩阵的特征值和特征向量,得到了精度很高的后屈曲挠度数值和临界载荷数值。实例证明,这种方法原理简单,易于程序实现。
Barycentric interpolation pseudospectral method is used to deal with the problem of the bucking of column under axial loading. This paper presents the Barycentric Lagrange interpolation collocation method to get the differentiation Matrix of unknown function. So the control under axial loading equation of column can be expressed as linear systems by the collocation method. According to those formulas, the buckling coefficients and modes of the column under axial loading can be obtained with different boundary conditions. Examples show that this method is simple in principle and easy to program.
出处
《山东建筑大学学报》
2011年第4期353-355,360,共4页
Journal of Shandong Jianzhu University
关键词
压杆稳定
微分矩阵
配点法
重心Lagrange插值
buckling of column under axial loading
differentiation Matrix
collocation method
15arycentrie Lagrange interpolation