期刊文献+

基于图数据挖掘算法的犯罪规律研究及应用 被引量:2

Research and Application on Crime Rule Based on Graph Data Mining Algorithm
下载PDF
导出
摘要 数据挖掘应用于犯罪集团或恐怖组织社会网络结构分析已经成为公安信息系统领域的研究热点,国内外在分析犯罪和恐怖组织之间的内在规律方面的研究工作亟待深入。与一般的数据挖掘技术相比,图能够表达更加丰富的语义,基于图数据挖掘技术应用于犯罪规律研究是一种新兴的研究方法。为了挖掘犯罪规律和频繁出现的核心成员,首先提出了基于图数据挖掘的相关理论,然后提出了基于相同犯罪特征频繁子图结构的挖掘犯罪规律算法GDMCR(Graph DataMining Crime Rule),最后利用GDMCR算法得到的频繁子图关联知识分析犯罪规律及网络核心成员。实验证明了文中提出的基于图数据挖掘犯罪规律分析系统的有效性和实用性,并验证了GDMCR算法的有效性。 The data mining technologies applying to analyze the crime rule has become a hot spot in field of the public security information system, there is little work being done on analyzing the crime rule of criminal and terrorist groups. Compared with other data technology, graph can express richer semantic meaning. It is a new paradigm to apply based on graph data raining algorithm to analyze the crime rules. To mine crime rule and key members of a crime group, first proposed theory based on graph data mining, then proposed a frequent subgraph of same crime characteristics based algorithm called GDMCR ( Graph Data Mining Crime Rule ), finally employed frequent subgraph analysis techniques to discover crime rule and key structure. The experimental results show the efficiency and usability of the crime rule analysis system based on graph data mining, and demonstrate that GDMCR is efficient.
出处 《计算机技术与发展》 2011年第11期89-91,95,共4页 Computer Technology and Development
基金 湖南省教育厅资助科研项目(10C0134) 湖南省教育厅重点项目基金(10A074) 湖南省自然科学基金(06JJ50107)
关键词 数据挖掘 频繁子图 犯罪规律 核心成员 关联知识 data mining frequent subgraph crime rule key members association knowledge
  • 相关文献

参考文献14

二级参考文献70

共引文献137

同被引文献67

  • 1Microsoft Academic Search. Explore researchers' cooperating network.[2009-12-01 J.[2014-11-20]. http://academic. research. microsoft. com/VisualExplorer.
  • 2Brynielsson J, Hogberg J, Kaati L, et al. Detecting social positions using simulation[C]//Proc of 2010 Int Conf on Advances in Social Networks Analysis and Mining (ASONAM). Alamitos, CA: IEEE, 2010: 48-55.
  • 3Palantir. Products Built for A Purpose.[2004-01-01].[2014-11-20]. https://www.palantir.com/.
  • 4Malewicz G, Austern M H, Bik A J C, et al, Pregel , A system for large-scale graph processing[C]//Proc of the 2010 ACM SIGMOD Int Conf on Management of Data. New York: ACM, 2010: 135-146.
  • 5Sarwat M, Elnikety S, He Y, et al. Horton: Online query execution engine for large distributed graphs[C]//Proc of the 28th IEEE Int Conf on Data Engineering (ICDE J. Alamitos, CA: IEEE, 2012: 1289-1292.
  • 6Low y, Gonzalez J, Kyrola A, et al. Graphlab , A new framework for parallel machine learning[C]//Proc of the 26th Conf on Uncertainty in Artificial Intelligence (UA]). Oregon, USA: AUAI, 2010.
  • 7Michael R G, David S J. Computers and intractability: A guide to the theory of NP-completeness[R]. New York: W. H. Freeman Company, 1979.
  • 8Christmas W J, Kittler J, Petrou M. Structural matching in computer vision using probabilistic relaxation[J]. Pattern Analysis and Machine Intelligence, 1995, 17(8): 749-764.
  • 9Ullmann J R. An algorithm for subgraph isomorphism[J]. Journal of the ACM (JACM), 1976,23(1): 31-42.
  • 10Cordelia L P, Foggia r. Sansone C, et al. A (sub) graph isomorphism algorithm for matching large graphs[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2004, 26(10): 1367-1372.

引证文献2

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部