期刊文献+

多输入离散T-S模糊双线性模型与模糊控制器设计 被引量:4

Multiple Inputs T-S Discrete Fuzzy Bilinear Model and Fuzzy Controller Design
原文传递
导出
摘要 针对一类多输入离散非线性系统给出了基于模糊双线性T-S模型的参数化新模型,用并行分布补偿算法(PDC)设计模糊控制器,以线性矩阵不等式(LM I)的形式给出系统H∞全局稳定的充分条件,并通过求解一系列线性矩阵不等式(LM I)给出控制器增益的设计方法,最后,通过仿真例子验证这个方法的有效性和可行性。 This paper presents a novel model based on bilinear T-S model for a class of discrete-time nonlinear systems with multiple inputs.A robust H∞ control approach is given for multiple inputs T-S discrete fuzzy bilinear model(DFBM) with parameters uncertainties and disturbances.The parallel distributed compensation(PDC) method is utilized to design a fuzzy controller,the stability conditions of the overall fuzzy control system are formulated by linear matrix inequalities(LMI) and the gain of controller is obtained by solving a set of linear matrix inequalities(LMI).Finally,the validity and applicability of the proposed schemes are demonstrated by a numerical simulation.
出处 《模糊系统与数学》 CSCD 北大核心 2011年第5期96-105,共10页 Fuzzy Systems and Mathematics
基金 国家自然科学基金资助项目(60974139) 中央高校基本科研业务费专项资金资助项目(72103676)
关键词 多输入离散模糊双线性模型 鲁棒H∞控制 并行分布补偿算法 线性矩阵不等式 Multiple Inputs T-S Discrete Fuzzy Bilinear Model Robust H∞ Control Parallel Distributed Compensation Linear Matrix Inequalities
  • 相关文献

参考文献11

  • 1Mohler R R. Nonlinear systems[M]. Englewood Cliffs,New Jersey.Prentice-Hall, 1991.
  • 2Mohler R R. Bilinear control processes[M]. New York : Academic , 1973.
  • 3李俊民,张果,杜彩霞.一类不确定多输入模糊双线性系统的鲁棒H_∞控制[J].控制理论与应用,2009,26(11):1298-1302. 被引量:11
  • 4Li T-H S, Hsiao M-Y, Tsai S-H, Lee J-Z. Robust H fuzzy control for a class of uncertain discrete fuzzy bilinear systems [J]. IEEE Trans. Systems, Man, Cybernetics, 2008,8 ( 2 ): 510 -527.
  • 5Takagi T, Sugeno M. Fuzzy identification of systems and its applications to modeling and control[J]. IEEE Trans. Systems, Man, Cybernetics, 1985,15 (1) : 116-132.
  • 6Tanaka K,Sugeno M. Stability analysis and design of fuzzy control system[J]. Fuzzy Sets and Systems,1992,45(2) : 135-156.
  • 7Kim E, Lee H. New approaches to relaxed quadratic stability condition of fuzzy control systems[J]. IEEE Trans. Fuzzy Systems,2000,8(5) :523-533.
  • 8Wu H N, Li H X. New approach to deladependent stability analysis and stabilization for continuous-time fuzzy systems with time-varying delay[J]. IEEE Trans. Fuzzy Systems, 2007,15 (3) : 482 - 493.
  • 9Tao C W, Taur J S. Robust fuzzy control for a plant with fuzzy linear model[J]. IEEE Trans. Fuzzy Systems, 2005, 13(1) :30-41.
  • 10Xu S, Lam J. Robust H control for uncertain discrete-time-delay fuzzy systems via output feedback controllers[J]. IEEE Trans. Fuzzy Systems, 2005,13 (1) : 82 - 93.

二级参考文献12

  • 1MOHLER R R. Nonlinear Systems: Application to Bilinear control[M]. Engle-wood Cliffs, NJ: Prentice-Hall, 1991, Vol.2.
  • 2MOHLER R R. Bilinear Control Processes[M]. New York: Academic, 1973.
  • 3TAKAGI T, SUGENO M. Fuzzy identification of systems and its applications to modeling and control[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1985, 15(1): 116- 132.
  • 4TANAKA K, SUGENO M. Stability analysis and design of fuzzy control system[J]. Fuzzy Sets and Systems, 1992, 45(2): 135 - 156.
  • 5KIM E, LEE H. New approaches to relaxed quadratic stability condition of fuzzy control systems[J]. IEEE Transactions on Fuzzy Systems, 2000, 8(5): 523 - 533.
  • 6WU H N, LI H X. New approach to deladependent stability analysis and stabilization for fuzzy systems with time- varying delay[J]. IEEE Transactions on Fuzzy Systems, 2007, 15(3) 482 - 493.
  • 7TAO C W, TAUR J S. Robust fuzzy control for a plant with fuzzy linear model[J]. IEEE Transactions on Fuzzy Systems, 2005, 13(1): 30 - 41.
  • 8YI Z, HENG P A. Stability of fuzzy control systems with bounded uncertain delays[J]. IEEE Transactions on Fuzzy Systems, 2002, 10( 1 ): 92 - 97.
  • 9TUAN H D, APKARIAN P, NARIKIYO T, et al. Parameterized lin- ear matrix inequality techniques in fuzzy control system design[J]. IEEE Transactions on Fuzzy Systems, 2001, 9(2): 324 - 332.
  • 10CHEN B, LIU X E Fuzzy guaranteed cost control for nonlinear systems with time-varying delay[J]. IEEE Transactions on Fuzzy Systems, 2005, 13(2): 238 - 249.

共引文献10

同被引文献32

  • 1Takagi T, Sugeno M. Fuzzy identification of systems and its application to modeling and control[J]. IEEE Transaction onSystem Man Cybern, 1985,15:116 - 132.
  • 2Wang H,Tanaka K, Griffin M, An approach to fuzzy control of nonlinear systems: stability and design issues[J]. IEEETransactions on Fuzzy Systems, 1996,4(1) : 14 - 23.
  • 3Wang W J, Sun C H. Relaxed stability and stabilization conditions for a T-S fuzzy discrete system[J]. Fuzzy Sets and Sys-tems. 2005, 156(2) : 208 - 225.
  • 4Wang X H,Ao D,Wu Z Q. Fuzzy synchronization of chaotic systems based on genetic algorithm[J]. Advanced MaterialsResearch, 2012 (524-527) :3809-3814.
  • 5刘豹,唐万生.现代校制理论[M].北京:机械工业出版社,2006.
  • 6Li T H S, Tsai S H. T-S fuzzy bilinear model and fuzzy controller design for a class of nonlinear systems[J]. IEEE Trans. Fuzzy Syst. , 2007,15 (3) : 494 - 505.
  • 7Li T H S, et al. Robust H∞ fuzzy control for a class of uncertain discrete fuzzy bilinear systems[J]. IEEE Trans. Syst. ,Man,Cybe. ,2008,38(2) :510-526.
  • 8Keel L H, Bhattacharryya S P. Robust, fragile, or optimal? [J]. IEEE Trans. Automatic Cont. , 1997,42(8):1098 -1105.
  • 9Yang G H, Wang J L. Non-fragile H∞control for linear systems with multiplicative controller gain variations[J]. Automatica, 2001,37: 727- 737.
  • 10Zhang B Y, Zhou S S, Li T. A new approach to robust and non-fragile H∞control for uncertain fuzzy systems[J]. Information Sciences, 2007,177 : 5118 - 5133.

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部