期刊文献+

拟阵上模糊合作对策的Banzhaf函数 被引量:1

The Banzhaf Function for Fuzzy Cooperative Games on Matroids
原文传递
导出
摘要 首先通过对清晰拟阵定义的拓展,给出了模糊拟阵的概念。通过定义具有多线性扩展形式的模糊合作对策在静态结构和动态结构拟阵上B anzhaf函数的公理体系,分别探讨了此类模糊合作对策在这两种拟阵上关于B anzhaf函数的存在性和唯一性。同时,通过定义具有Choquet积分形式模糊合作对策在静态结构和动态结构拟阵上B anzhaf函数的公理体系,分别探讨了此类模糊合作对策在这两种拟阵上关于B anzhaf函数的存在性和唯一性。 In this paper,the definition of the fuzzy matroids is obtained by extending the crisp case.The existence and uniqueness of the Banzhaf function on matroids with static and dynamic structure are discussed for fuzzy cooperative games with multilinear extension form by corresponding axiomatic systems.At the same time,the axiomatic systems for the Banzhaf function on matroids with static and dynamic structure are proposed for fuzzy cooperative games with Choquet integral form,the existence and uniqueness of the Banzhaf function are also studied for this kind of fuzzy cooperative games on matroids.
作者 孟凡永 张强
出处 《模糊系统与数学》 CSCD 北大核心 2011年第5期106-114,共9页 Fuzzy Systems and Mathematics
基金 国家自然科学基金资助项目(707710107080106471071018)
关键词 拟阵 模糊合作对策 Banzhaf函数 Matroids Fuzzy Cooperative Games Banzhaf Function
  • 相关文献

参考文献16

  • 1Bilbao J M, et al. The Shapley value for games om matroids: The static model[J]. Mathematical Methods of Operations Research, 2001,53 (2) : 333-348.
  • 2Bilbao J M, et al. The Shapley value for games on matroids:The dynamic model[J]. Mathematical Methods of Operations Research, 2002,56 (2) : 287-301.
  • 3Shapley L S. A value for n-person game[C]//Kuhn H, Tucker A. Contributions to the theory of games(Vol. 2). Princeton, NJ : Princeton University Press, 1953 : 307-317.
  • 4Algaba E, et al. Axiomatizations of the Shapley value for cooperative games on antimatroids[J]. Mathematical Methods of Operations Research, 2003,57 (1) : 49-65.
  • 5Algaba E, et al. An axiomatization of the Banzhaf value for cooperative games on antimatroids[J]. Mathematical Methods of Operations Research, 2004,59 (1) : 147 - 166.
  • 6Banzhaf J. Weighted voting does not work: A mathematical analysis[J]. Rutgers Law Rev. ,1965,19:317-343.
  • 7何华,孙浩.拟阵上合作对策的单调解[J].应用数学学报,2008,31(1):52-60. 被引量:3
  • 8孙浩,何华.拟阵上动态结构合作对策的单调解[J].高校应用数学学报(A辑),2009,24(1):102-110. 被引量:4
  • 9Young P. Monotonic solutions of cooperative games[J]. International Journal of Game Theory, 1985,14:65-72.
  • 10Owen G. Multilinear extensions of games[J]. Management Sciences, 1972, (18):64-79.

二级参考文献13

  • 1Bilbao J M, Driessen T, A.Jimenez Losada, Lebron E. The Shapley Value for Games on Matroids: the Static Model. Mathematical Methods of Operations Research, 2001, 53:333-348
  • 2Bilbao J M, Driessen T, A. Jimenez Losada, Lebron E. The Shapley Value for Games on Matroids: the Dynamic Model. Mathematical Methods of Operations Research, 2002, 56:287-301
  • 3Shapley L S. A Value for n-person Games. In: Kuhn HW, r AW (Eds). Contributions to the Theory of Games Ⅱ. Annals of Mathematics Studies No. 28, Princeton University Press, Princetonm, 1953, 307-317
  • 4Sun H, Driessen T. An Individually Marginalistic Value for Set Games on Matroids. The 2nd Cologne Twente Workshop on Graphs and Combinatorial Optimization, University of Twente, the Netherlands, 2003, 116-120
  • 5Sun H, He H. A Semi-Marginalistic Value for Set Games on Matroids, Proceedings of the Eighth National Conference of Operations Research Society of China, 2006, 610-615
  • 6Young P. Monotonic Solutions of Cooperative Games. International Journal of Game Theory, 1985, 14:65-72
  • 7Lai J. Theory of Matroids. Beijing: Higher Enducation Press, 2002
  • 8Bilbao J M, Driessen T, Jimenez Losada A, et al. The Shapley value for games on matroids: the dynamic model[J]. Mathematical Methods of Operations Research, 2002, 56: 287-301.
  • 9Sun H, Driessen T. An individually marginalistic value for set games on matroids[A]. In: The 2nd Cologne Twente Workshop on Graphs and Combinatorial Optimization[C]. Netherlands: University of Twente, 2003, 116-120.
  • 10孙浩,何华.拟阵上集合对策的拟边缘贡献解[A].中国运筹学会第八届学术交流会论文集[C].2006,610-615.

共引文献3

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部