期刊文献+

钠离子对成骨细胞的影响及其与上皮钠通道的关系 被引量:12

Effects of sodium on rat osteoblast and the role of epithelial sodium channel
下载PDF
导出
摘要 探讨不同浓度钠离子(Na + )对大鼠成骨细胞(Ob)成骨功能的影响,及其与上皮钠通道(ENaC)的相关性。方法 Ob经1×10 -4 ~1 mol/L Na + 处理后,检测Ob的增殖和分化情况。再从中选3个浓度Na + 处理Ob,RT-PCR测定成骨功能相关基因(Cbfa1,OPN,OC)及ENaC-α的表达变化。结果 在1×10 -4 ~1 mol/L范围内,Na + 对Ob具有双向影响作用,与对照组相比低浓度Na + 明显促进Ob分化,升高Na+浓度则抑制Ob分化,而Na+对Ob的增殖无影响。RT-PCR示:Na + 对Ob中 Cbfa1、OPN 及 OC 表达同样具有双向作用,低浓度促进表达,高浓度抑制;并且 ENaC-α mRNA 在 Na + 调控下的变化情况与成骨功能相关基因及Ob分化活性的变化相一致。 结论 Na + 可直接影响Ob的分化及成骨功能相关基因的表达,而且 Na + 对Ob的影响作用与ENaC相关。 Objective To study the effects of sodium on rat osteoblast function and explore the role of epithelial sodium channel(ENaC) in such effects.Methods The proliferation and differentiation of rat osteoblasts were evaluated following treatment with 1×10-4 to 1 mol/L Na+.The mRNA expressions of the osteogenic genes and ENaC-α gene in the treated cells were assessed using RT-PCR.Results Within the concentration of 1×10-4 to 1 mol/L,Na+ showed a two-way effect on the osteoblasts: low-concentration Na+(1×10-4 mol/L) significantly promoted osteoblast differen-tiation,while at higher concentrations(0.5 and 1 mol/L),Na+ produced an opposite effect.Sodium did not significantly affect osteoblast proliferation.Low-concentration Na+ significantly increased the transcription of Cbfa1,OPN and OC,while high concentrations of Na+ decreased their transcription.Low-concentration Na+ also enhanced the mRNA expression of ENaC-α,but high-concentration Na+ treatment lowered ENaC-α mRNA expression.Conclusion Na+ displays a direct dose-related effect on osteoblasts by affecting its differentiation,osteogenic gene expression profile,and ENaC-α gene expression,suggesting the involvement of ENaC in Na+-mediated functional modulation of rat osteoblasts.
出处 《南方医科大学学报》 CAS CSCD 北大核心 2011年第11期1871-1874,共4页 Journal of Southern Medical University
基金 国家自然科学基金(30971172) 广东省科技计划项目(2010B050700022)~~
关键词 钠离子 成骨细胞 上皮钠离子通道 sodium osteoblasts epithelial sodium channel
  • 相关文献

参考文献19

  • 1Strnad M. Salt and cancer[J]. Acta Medica Croatica, 2010, 64(2): 159-61.
  • 2He FJ, Macgregor GA. Reducing population salt intake worldwide: from evidence to implementation[J]. Prog Cardiovasc Dis, 2010, 52 (5): 363-82.
  • 3Krzesinski JM. Sodium and arterial hypertension-one htmdred years of controversies[J]. Bull Mem Acad R Med Belg, 2009, 164 (3-4): 143-55.
  • 4Caudarella R, Vescini F, Rizzoli E, et al. Salt intake, hypertension, and osteoporosis[J]. J Endocrinol Invest, 2009, 32(4 Suppl): 15-20.
  • 5Jelakovi6 B, Premuzi6 V, Skupnjak B, et al. Salt-hidden poison in everyday meal[J]. Lijec Vjesn, 2009, 131(5-6): 146-54.
  • 6Studer RA, Person E, Robinson-Rechavi M, et al. Evolution of theepithelial sodium channel and the sodium pump as limiting factors of aldosterone action on Sodium transport [J]. Physiol Genomics, 2011, 43(13): 844-54.
  • 7Almaca J, Dahim6ne S, Appel N, et al. Functional genomlcs assays to study CFTR traffic and ENaC function [J]. Methods Mol Biol, 2011, 742: 249-64.
  • 8Qadri YJ, Cormet-Boyaka E, Benos DJ, et al. CFTR regulation of epithelial sodium channel[J]. Methods Mol Biol, 2011,742: 35-50.
  • 9Vilasi A, Capasso G. Proteomics and tubulopathies [J]. J Nephrol, 2010, 23(Suppl 16): S221-7.
  • 10Mobasheri A, Pocock AE, Trujillo E, et al. Detection of mRNA and protein of the ct subunit of the epithelial sodium channel (ENaC) in human osteoblasts and human ACL cells [J]. J Physiol, 2001, 6: 46-535.

二级参考文献22

  • 1Johnell O,Kanis JA.An estimate of the worldwide prevalence and disability associated with osteoporotic fractures[J].Osteopoms Int,2006,17(12):1726-1733.
  • 2Yoneda Y,Kuramoto N,Kitayama T,et.al.Consolidation of transient ionotropic glutamate signals through nuclear transcription factors in the brain[J].Prog Neurobiol,2001,63(6):697-719.
  • 3Riedel G,Platt B,Micheau J.Glutamate receptor function in learning and memory[J].Behav Brain Res,2003,140(1-2):1-47.
  • 4Hinoi E,Fujimori S,Takarada T,et al.Facilitation of glutamate release by ionotropic glutamate receptors in osteoblasts[J].Biochem Biophys Res Commun,2002,297(3):452-458.
  • 5Huggett J,Vaughan-Thomas A,Mason D.The open reading frame of the Na(+)-dependent glutamate transporter GLAST-1 is expressed in bone and a splice variant of this molecule is expressed in bone and brain[J].FEBS Lett,2000,485(1):13-18.
  • 6Mason DJ,Suva LJ,Genever PG,et al.Mechanically regulated expression of a neural glutamate transporter in bone:a role for excitatory amino acids as osteotropic agents?[J].Bone,1997,20(3):199-205.
  • 7Hinoi E,Fujimori S,Nakamura Y,et al.Group Ⅲmetabotropic glutamate receptors in rat cultured calvarial osteoblasts[J].Biochem Biophys Res Commun,2001,281(2)341-346.
  • 8Rodan GA,Martin TJ.Role of osteoblasts in hormonal control of bone resorption-a hypothesis[J].Calcif Tissue Int,1981,33(4):349-351.
  • 9Inagaki N,Kuromi H,Gonoi T,et al.Expression and role of ionotropic glutamate receptors in pancreatic islet cells[J].FASEB J,1995,9(8):686-691.
  • 10Genever PG,Wilkinson DJ,Patton A,et al.Expression ofa functional N-methyl-D-aspartate-type glutamate receptor by bone marrow megakaryocytes[J].Blood,1999,93(9):2876-2883.

共引文献2

同被引文献216

引证文献12

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部