期刊文献+

平面2N体问题的正N边形中心构型

REGULAR N-SIDED POLYGONAL CENTRAL CONFIGURATION FOR PLANE 2N-BODY PROBLEM
下载PDF
导出
摘要 在对N体问题中心构型的研究中,正多边形解是研究对象之一.其特点是,N个等质量的质点,位于一个正N边形的顶点上.有没有2 N个质点,构成一个正N边形解呢?即N个等质量的质点,位于一个正N边形的顶点上,另外N个等质量的质点,位于该正N边形的边的中点.本文研究了这种解的存在条件,并给出了具体的解. One solution for central configuration of N-body problem is regular N-sided polygon.Regular N-sided polygon solution has the characteristic that N equal mass particles lie on the vertices of a regular N-sided polygon.This paper investigates whether a regular N-sided polygon solution exists for the 2N particles problem,or whether N equal mass particles lies on the vertices of a regular N-sided polygon,and whether another N equal mass particles lies on the midpoints of the sides.The conditions giving the solution were discussed and the solution was shown.
出处 《北京师范大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第5期470-472,共3页 Journal of Beijing Normal University(Natural Science)
基金 国家自然科学基金资助项目(10473002) 国家基金委-中科院天文联合基金项目(10778717)
关键词 2N体问题 正多边形解 中心构型 2N-body problem regular polygon solution numerical method
  • 相关文献

参考文献15

  • 1Rruschi M, Calogero F. Solvable and/or integrable and/ or linearizable N-body problems in ordinary (Three- Dimensional) space. I [J]. Journal of Nonlinear Mathematical Physics, 2000, 7 (3) : 303.
  • 2Perko L M, Walter E L. Regular polygon solutions of the N-body problem[J]. Proc AMS, 1985, 94:301.
  • 3Xie Z F, Zhang S Q. A simpler proof of regular polygon solutions of the N-body problem[J]. Physics Letters A, 2000, 277:156.
  • 4Kalvouridis T J. Retrograde orbits in ring configurations of N-bodies[J].Astrophysics and Space Science, 2003, 284(3): 1013.
  • 5Elmabsout B. Nonlinear instability of some relative equilibrium configurations in the (n + 1 )-body problem [J]. Romanian Astronomical Journal, 1996, 6: 61.
  • 6Kalvouridis T J. Periodic solutions in the ring problem [J].Astrophysics and Space Science, 1999, 266(4):467.
  • 7赵甫荣,邓春华.共面n+1体中心构型[J].西南民族大学学报(自然科学版),2009,35(1):67-72. 被引量:3
  • 8Zhang S Q, Zhou Q. Nested regular polygon solutions for planar 2N-body problems[J]. Science in China Series A, 2002, 45(8) :1053.
  • 9Zhang S Q, Zhou Q. Periodie solutions for planar 2N body problems [J]. Proc Amer Math Soc, 2003, 131:2161.
  • 10Jaume Llibre, Luci Any Roberto. New doubly- symmetric families of comet-like periodic orbits in the spatial restricted ( N q- 1 )-body problem [J]. CelestMech Dyn Astr, 2009, 104: 307.

二级参考文献31

  • 1苏霞,温书.四体问题的平行四边形中心构型[J].淮阴工学院学报,2006,15(5):15-19. 被引量:3
  • 2汤建良.关于4-体问题中心构型的一点研究[J].系统科学与数学,2006,26(6):647-650. 被引量:2
  • 3刘文中,徐玢,王欢,张同杰.N体问题的“蜂窝型”中心构型[J].北京师范大学学报(自然科学版),2006,42(6):576-578. 被引量:3
  • 4Abraham R. and Marsden J., Foundations of Mechanics[M], (2nd ed). London: Benjamin/ Cummings, 1978.
  • 5Darwin G H, Periodic Orbits[M], London. Cambridge Univ. Press. , 1941
  • 6Elmabsout B. , Sur L'existence des certaines configurations d'equilibre relatif dans le probleme des N corps[J], Celest. Mech. 1988,41(2) :131-151.
  • 7Marcus M. and Mine H. , A survey of matrix theory and matrix inequalities[M], Allyn and Bacon, Boston, Mass, 1964.
  • 8MacMillan W. D. and Bartky W. , Permanent configurations in the problem of four bodies[J], Trans. AMS 1932,34(10) :838-874.
  • 9Moeekel R. and Simo C. , Bifurcation of spatial central configurations from planar ones[J], SIAM J, Math. Anal. 1995,26(4) :978-998.
  • 10Perko L.M. and Walter E. L. , Regular polygon solutions of the N-body problem,Proc. AMS 1985, 94(2) : 301-309.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部