期刊文献+

求解不可压缩流动的一种新算法

A New Method for the Incompressible Flow
下载PDF
导出
摘要 在Jameson有限体积法的基础上发展了一种模拟不可压流动的数值方法。该算法用四步Runge-Kutta时间推进法直接求解非线性的动量方程,充分利用了良好的非线性收敛特性,并从连续方程出发推导了求解压力的方程,解决了压力与速度的耦合问题。最后用该方法在同位网格上,对二维平板边界层流、二维顶盖驱动方腔层流及二维扩压器管道湍流进行了数值模拟。计算结果与理论值、标准解及试验数据进行了比较分析,从而证实了该方法对模拟不可压流动的适用性,并显示出了编程简单、易于推广、计算效率高等优点。 Based on Jameson finite-volume method, created. Non-linear momentum equation is solved using a new numerical method simulating incompressible flow is four steps Runge-Kutta time stepping scheme. Good convergence of Non-linear quality has been full used. The pressure equation that solves coupled program of pressure and velocity is deducted from the continuity equation. Finally, this method is used to calculate 2-D laminar boundary layer, 2-D lid-driven cavity flow and 2-D diffuser turbulent flows using B-L turbulence model based on bodyfit ted coordinate and appositional grids. Numerical simulation is compared and analyzed with the theoretical value, benchmark and experiment data. The results show that this numerical simulation method has strong capability to compute incompressible flow and advantage to program easily and compute efficiently.
出处 《科学技术与工程》 2011年第31期7594-7600,共7页 Science Technology and Engineering
关键词 数值模拟 不可压缩流动 顶盖驱动方腔流 扩压管道流动 numerical simulation incompressible flow lid-driven cavity flow diffuser flow
  • 相关文献

参考文献9

  • 1闫文辉.二维湍流场的数值模拟.北京:北京航空航天大学能源与动力工程学院,2004.
  • 2陈矛章.黏性流体动力学基础.北京:高等教育出版社,2002:246-274.
  • 3尹幸愉.显式中心型有限体积法的研究.北京:北京航空航天大学流体所,2000.
  • 4Simpson R L, Samuel A, Joubert P. Specifications for computation simple case/incompressible. Physics of Fluids, 1986; 29 ( 12 ) : 3914-3916.
  • 5闫文辉.GAO—YONG可压缩湍流模式数值研究.北京:北京航空航天大学能源与动力工程学院,2008.
  • 6Albensoeder S, Kuhlmann H C. Accurate three-dimensional lid-driv- en cavity flow. Journal of Computational Physics, 2005 ; 206 ( 2 ) : 536-558.
  • 7宋道云,刘洪来,方波,江体乾.动量插值与完全压力校正算法及交错网格SIMPLE算法的比较[J].华东理工大学学报(自然科学版),2003,29(2):124-128. 被引量:3
  • 8Botella O, Peyret R. Benchmark spectral results on the lid-driven cavity flow. Computers & fluids,1998 ;27(4) :421-433.
  • 9陈庆光,张永建,钱宝光.QUICK和乘方格式在顶盖驱动方腔流动数值计算中的比较[J].山东科技大学学报(自然科学版),2002,21(1):8-11. 被引量:5

二级参考文献10

  • 1PatankarsV.传热和流体流动的数值方法[M].合肥:安徽科学技术出版社,1984..
  • 2PatankarSV.传热和流体流动的数值计算[M].北京:科学出版社,1984..
  • 3Leonard B P. A stable and accurate convective modeling procedure based on quadratic upstream intepolation [ J ].Computer Methods in Applied Mechanics and Engineering, 1979,19: 59 - 98.
  • 4Pollard A, Siu A L W. The calculation of some laminar flows using various discretization schemes [J ]. Computer Methods in Applied Mechanics and Engineering, 1982,35: 293 - 313.
  • 5Hayase T,Humphery J A C,Grief R. A consistently formulated QUICK scheme for fast and stable convergence using finite-Volume iterative calculation procedures [ J ].Journal of Computational Physics, 1992,98:108- 118.
  • 6Shyy W, Tong S S, Correa S M. Numerical recirculating flow calculation using a body-fitted coordinate system[J].Numerical Heat Transfer,1985,8:99- 113.
  • 7Patankar S V. Numerical Heat Transfer and Fluid Flow[M]. New York: Hemispher, 1980.
  • 8Ghia U, Ghia K N,Shin C T. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method [ J ]. Journal of Computational Physics, 1982,48:387 - 411.
  • 9Tang L Q, Cheng T and Tsang T T H. Transient solutions for three-dimensional lid-driven cavity flows by a least-squares finite element methood [J ]. International Journal for Numerical Methods in Fluids, 1995, 21:413-432.
  • 10Darwish M S, Moukalled F. The normalized weighting factor method: a novel technique accelerating the convergence of high-resolution convective schemes[J ]. Numerical Heat Transfer, Part B, 1996,30: 217 - 237.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部