期刊文献+

基于EEMD-HHT边际谱的轴承故障诊断 被引量:12

Bearing Fault Diagnosis Based on Ensemble Empirical Mode and Hilbert-Huang Transform Marginal Spectrum
下载PDF
导出
摘要 提出一种基于聚合经验模态分解(ensemble empirical mode decomposition,EEMD)和Hilbert-Huang变换(HHT)边际谱的滚动轴承故障诊断方法。首先采用EEMD方法将轴承振动信号分解成若干个模态混叠得到较好抑制的固有模态函数(IMFs);然后对各IMF进行Hilbert变换,求出轴承振动信号的总HHT边际谱。最后根据该边际谱的幅值特性,确定滚动轴承的故障特征。提供了一种滚动轴承故障诊断的有效工具。 A signal analysis technique for rolling beating fault diagnosis based on ensemble empiricalmode decomposition (EEMD) and Hilbert-Huang transform (HHT) is presented. The EEMD method is used to decompose the bearing vibration signal into many of intrinsic mode function (IMF) components, which the mode mixing is good inhibited. Then the Hilbert transform is applied to each intrinsic mode function. Therefore the total HHT marginal spectrum of beating vibration signal is obtained. The character of the beating fault can be easier recognized according to the total HHT marginal spectrum. This method provides a viable diagnosis tool for rolling bearing fault diagnosis.
出处 《科学技术与工程》 2011年第31期7625-7629,共5页 Science Technology and Engineering
关键词 振动与波 EEMD 模态混叠HHT 故障诊断 边际谱 vibration and wave EEMDmode mixing HHT fault diagnosis marginal spectrum
  • 相关文献

参考文献6

  • 1Huang N E,Shen Z,LOng S R,et al. The empirical mode decomposi- tion and the Hilbert spectrum for nonlinear and non-stationary time se- ries analysis. Proceeding of Royal Society London, Series A, 1998 ; 454:903-995.
  • 2Huang N E, Shen Z, Long S R. A new view of nonlinear water waves:The Hilbert spectrum. Annum Review of Fluid Mechanics, 1999 ;31:417-457.
  • 3Wu Z, Huang N E. Ensemble empirical mode decomposition: a noise- assisted data analysis method. Advances in Adaptive Data Analysis, 2009;1(1) :1-41.
  • 4钟佑明,秦树人,汤宝平.希尔伯特黄变换中边际谱的研究[J].系统工程与电子技术,2004,26(9):1323-1326. 被引量:69
  • 5于德介,程军圣,杨宇.机械故障诊断的Hilbert-Huang变换方法.北京:科学出版社,2005.
  • 6Li Hui, Zhang Yuping, Zheng Haiqi. Hilbert-Huang transform and marginal spectrum for detection and diagnosis of localized defects in roller bearings. Journal of Mechanical Science and Technology,2009 ; 23 (2) :291-301.

二级参考文献11

  • 1Qin S, Chen DP. Joint Time-Frequency Analysis[J]. IEEE Signal Processing Magazine, 1999, 16(2): 52-67.
  • 2boashash B. Estimating and Interpreting the Instantaneous Frequency of a Signal--Part 1:Fundamentals[J]. Proc. IEEE, 1992, 80(4): 520-538.
  • 3Champency C D. A Handbook of Fourier Theorems[M]. London: Cambridge University Press, 1987.
  • 4Huang N E. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis[J]. J. Proc.R. Soc. Lond. A, 1998, 454: 903-995.
  • 5Cohen L. Time Frequency Analysis[M]. New York: Prentice-Hall, 1995.
  • 6Schlurmann T. Spectral Analysis of Nonlinear Water Waves Based on the Hilbert-Huang Transformation[J]. Journal of Offshore Mechanics and Arctic Engineering- Transactions of the ASME, 2002, 124(1): 22-27.
  • 7Veltcheva A D. Wave and Group Transformation by a Hilbert Spectrum [J]. Coastal Engineering Journal, 2002, 44(4): 283 - 300.
  • 8Pinzon J E. Using HHT to Successfully Uncouple Seasonal and Interannual Components in Remotely Sensed Data[A]. Proc 6th World Multiconference on Systemics, Cybernetics and Informatics, 2002. 287- 292.
  • 9Zhong Y M, Qin S R. HHT and a New Noise Removal Method[A].Proc 2nd International Symposium on Instrumentation Science and Technology, 2002. 553 - 557.
  • 10Loh C H. Application of the Empirical Mode Decomposition-Hilbert Spectrum Method to Identify Near-Fault Ground-Motion Characteristics and Structural Responses[J]. Bulletin of the Seismological Society of America, 2001, 91(5): 1339 - 1357.

共引文献68

同被引文献83

引证文献12

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部