摘要
提出一种基于聚合经验模态分解(ensemble empirical mode decomposition,EEMD)和Hilbert-Huang变换(HHT)边际谱的滚动轴承故障诊断方法。首先采用EEMD方法将轴承振动信号分解成若干个模态混叠得到较好抑制的固有模态函数(IMFs);然后对各IMF进行Hilbert变换,求出轴承振动信号的总HHT边际谱。最后根据该边际谱的幅值特性,确定滚动轴承的故障特征。提供了一种滚动轴承故障诊断的有效工具。
A signal analysis technique for rolling beating fault diagnosis based on ensemble empiricalmode decomposition (EEMD) and Hilbert-Huang transform (HHT) is presented. The EEMD method is used to decompose the bearing vibration signal into many of intrinsic mode function (IMF) components, which the mode mixing is good inhibited. Then the Hilbert transform is applied to each intrinsic mode function. Therefore the total HHT marginal spectrum of beating vibration signal is obtained. The character of the beating fault can be easier recognized according to the total HHT marginal spectrum. This method provides a viable diagnosis tool for rolling bearing fault diagnosis.
出处
《科学技术与工程》
2011年第31期7625-7629,共5页
Science Technology and Engineering