期刊文献+

A NUMERICAL BOUNDARY EIGENVALUE PROBLEM FOR ELASTIC CRACKS IN FREE AND HALF SPACE

A NUMERICAL BOUNDARY EIGENVALUE PROBLEM FOR ELASTIC CRACKS IN FREE AND HALF SPACE
原文传递
导出
摘要 We present in this paper a numerical method for hypersingular boundary integral equations. This method was developed for planar crack problems: additional edge singularities are known to develop in that case. This paper includes a rigorous error analysis proving the convergence of our numerical scheme. Three types of examples are covered: the Laplace equation in free space, the linear elasticity equation in free space, and in half space. We present in this paper a numerical method for hypersingular boundary integral equations. This method was developed for planar crack problems: additional edge singularities are known to develop in that case. This paper includes a rigorous error analysis proving the convergence of our numerical scheme. Three types of examples are covered: the Laplace equation in free space, the linear elasticity equation in free space, and in half space.
作者 Darko Volkov
出处 《Journal of Computational Mathematics》 SCIE CSCD 2011年第5期543-573,共31页 计算数学(英文)
关键词 Hypersingular boundary integral equations Numerical error analysis Eigen-value problems Faults in free space and half space Somigliana tensor of the second kindin free space and in half space. Hypersingular boundary integral equations, Numerical error analysis, Eigen-value problems, Faults in free space and half space, Somigliana tensor of the second kindin free space and in half space.
  • 相关文献

参考文献22

  • 1H. Aochi, E. Fukuyama, and M. Matsumura, Spontaneous Rupture Propagation on a Non-planar Fault in 3-D Elastic Medium, Pure Appl. Geophys., 157 (2000), 2003-2027.
  • 2L. Badea, I. R. Ionescu, and S. Wolf, Schwarz method for earthquake source dynamics, J. Comput. Phys., 227 (2008), 3824-3848.
  • 3C. Dascalu, I. R. Ionescu, and M. Campillo, Fault finiteness and initiation of dynamic shear instability, Earth Planet. Se. Lett., 177 (2000), 163-176.
  • 4G. P. Eatwell, J. A. Simmons, and J. R. Willis, A new representation for the dynamic green's tensor of an elastic half-space or layered medium, Wave Motion, 4 (1982), 53-73.
  • 5K. L. Feigl and E. Dupr@, RNGCHN: a program to calculate displacement components from dislocations in an elastic half-space with applications for modeling geodetic measurements of crustal deformation, Computers 8~ Geosciences, 25 (1999) 695-704.
  • 6G. C. Hsiao, E. Schnack, and W. L. Wendland, A hybrid coupled finite-boundary element method in elasticity, Comput. Method. Appl. M., 173 (1999), 287-316.
  • 7I. R. Ionescu, D. Volkov, Earth surface effects on active faults: an eigenvalue asymptotic analysis, J Comput. Appl. Math., 220 (2008), 143-162.
  • 8L. R. Johnson, Green's Function for Lamb's Problem, Geophyso J. R. asfr. Soc., 37 (1974), 99-131.
  • 9P. A. Martin, L. Paivarinta, and S. Rempel, A normal crack in an elastic half-space with stress-free surface, Math. Method. Appl. Sci., 16 (1992), 563-579.
  • 10P. A. Martin and F. J. Rizzo, On Boundary Integral Equations for Crack Problems, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 421,341-355.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部