A NUMERICAL BOUNDARY EIGENVALUE PROBLEM FOR ELASTIC CRACKS IN FREE AND HALF SPACE
A NUMERICAL BOUNDARY EIGENVALUE PROBLEM FOR ELASTIC CRACKS IN FREE AND HALF SPACE
摘要
We present in this paper a numerical method for hypersingular boundary integral equations. This method was developed for planar crack problems: additional edge singularities are known to develop in that case. This paper includes a rigorous error analysis proving the convergence of our numerical scheme. Three types of examples are covered: the Laplace equation in free space, the linear elasticity equation in free space, and in half space.
We present in this paper a numerical method for hypersingular boundary integral equations. This method was developed for planar crack problems: additional edge singularities are known to develop in that case. This paper includes a rigorous error analysis proving the convergence of our numerical scheme. Three types of examples are covered: the Laplace equation in free space, the linear elasticity equation in free space, and in half space.
参考文献22
-
1H. Aochi, E. Fukuyama, and M. Matsumura, Spontaneous Rupture Propagation on a Non-planar Fault in 3-D Elastic Medium, Pure Appl. Geophys., 157 (2000), 2003-2027.
-
2L. Badea, I. R. Ionescu, and S. Wolf, Schwarz method for earthquake source dynamics, J. Comput. Phys., 227 (2008), 3824-3848.
-
3C. Dascalu, I. R. Ionescu, and M. Campillo, Fault finiteness and initiation of dynamic shear instability, Earth Planet. Se. Lett., 177 (2000), 163-176.
-
4G. P. Eatwell, J. A. Simmons, and J. R. Willis, A new representation for the dynamic green's tensor of an elastic half-space or layered medium, Wave Motion, 4 (1982), 53-73.
-
5K. L. Feigl and E. Dupr@, RNGCHN: a program to calculate displacement components from dislocations in an elastic half-space with applications for modeling geodetic measurements of crustal deformation, Computers 8~ Geosciences, 25 (1999) 695-704.
-
6G. C. Hsiao, E. Schnack, and W. L. Wendland, A hybrid coupled finite-boundary element method in elasticity, Comput. Method. Appl. M., 173 (1999), 287-316.
-
7I. R. Ionescu, D. Volkov, Earth surface effects on active faults: an eigenvalue asymptotic analysis, J Comput. Appl. Math., 220 (2008), 143-162.
-
8L. R. Johnson, Green's Function for Lamb's Problem, Geophyso J. R. asfr. Soc., 37 (1974), 99-131.
-
9P. A. Martin, L. Paivarinta, and S. Rempel, A normal crack in an elastic half-space with stress-free surface, Math. Method. Appl. Sci., 16 (1992), 563-579.
-
10P. A. Martin and F. J. Rizzo, On Boundary Integral Equations for Crack Problems, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 421,341-355.
-
1徐春晖,秦大验,华云龙.热载荷作用下平面裂纹问题的奇异积分方程与边界无法[J].应用数学和力学,2000,21(4):357-364. 被引量:1
-
2张英晗,杨小远.一类带有空间时间白噪音随机弹性方程的全离散差分格式[J].计算数学,2016,38(1):25-46.
-
3Xiaoyuan Yang,Xiaocui Li,Ruisheng Qi,Yinghan Zhang.FULL-DISCRETE FINITE ELEMENT METHOD FOR STOCHASTIC HYPERBOLIC EQUATION[J].Journal of Computational Mathematics,2015,33(5):533-556. 被引量:1
-
4段静波,李道奎,尚国华,雷勇军.裂纹尖端“加料”奇异单元周围的过渡等参单元研究[J].固体力学学报,2010,31(S1):97-102. 被引量:1
-
5严鹏,蒋持平.双周期平面裂纹问题的特征展开-变分方法[J].力学学报,2009,41(5):681-687. 被引量:1
-
6梁拥成,刘一华,刘小妹.一种确定应力强度因子的数值方法[J].合肥工业大学学报(自然科学版),2003,26(4):546-549. 被引量:7
-
7R.歌娄温斯基(等),陈涛.偏微分方程[J].国外科技新书评介,2009(10):3-4.
-
8李尧臣.压电材料平面裂纹问题的强度因子和能量释放率[J].同济大学学报(自然科学版),2002,30(4):437-445. 被引量:4
-
9钟伟芳,范洁,梁以德.等参数平面裂纹问题的二级分形有限元分析[J].华中科技大学学报(自然科学版),2005,33(12):19-21. 被引量:1
-
10ATTIA HILI Molka,BOUAZIZ Slim,MAATAR Mohamed,FAKHFAKH Tahar,HADDAR Mohamed.HYDRODYNAMIC AND ELASTOHYDRODYNAMIC STUDIES OF A CYLINDRICAL JOURNAL BEARING[J].Journal of Hydrodynamics,2010,22(2):155-163. 被引量:12