期刊文献+

带随机初值的随机偏微分方程整体解的存在性 被引量:1

The Existence of a Global Solution to Stochastic Partial Differential Equation with Random Initial Conditions
下载PDF
导出
摘要 研究了一类带随机初值并且由分数次Brownian运动驱动的随机偏微分方程.借助于Kolmogorov准则,建立了整体Lipschitz条件下此类随机偏微分方程的一个解.同时证明了局部Lipschitz条件下整体解的存在性. This paper deals with a class of stochastic partial differential equations(SPDEs) driven by fractional Brownian motion with random initial conditions.Based on Kolmogorov's criterion,the authors construct a solution to the SPDEs with global Lipschitz conditions. Simultaneously,the existence of the global solution is proved under local Lipschitz conditions.
出处 《数学年刊(A辑)》 CSCD 北大核心 2011年第5期545-564,共20页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.10871097 No.11028102) 江苏省高校自然科学基金(No.11KJA110001) 江苏省高校"青蓝工程"资助的项目
关键词 随机偏微分方程 格林函数 Kolmogorov准则 随机初值 Stochastic partial differential equation Green's function Kolmogorov's criterion Random initial condition
  • 相关文献

参考文献2

二级参考文献42

  • 1Uemura, H.: Construction of the solution of 1-dimensional heat equation with white noise potential and its asymptotic behavior. Stoch. Anal. Appl., 14, 487-506 (1996).
  • 2Nualart, D., Ouknine, Y.: Regularization of quasilinear heat equations by a fractional noise. Stoch. Dyn., 4, 201-221 (2004).
  • 3Hu, Y.: Heat equations with fractional white noise potentials. Appl. Math. Optim., 43, 221-243 (2001).
  • 4Bo, L., Wang ,Y.: Stochastic Cahn-Hilliard partial differential equations with Levy spacetime white noises. Stoch. Dyn., 6(2), 229-244 (2006).
  • 5Bo, L., Jiang Y., Wang, Y.: On a class of stochastic Anderson models with fractional noises. Stoch. Anal. mppl., 26(2), 256-273 (2008).
  • 6Qian, A., Li, S.: Multiple solution for a fourth-order asymptotically linear elliptic problem. Acta Mathematica Sinica, English Series, 22(4), 1121-1126 (2006).
  • 7Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications, Springer, New York, 1998.
  • 8Marquez-Carreras, D., Sarra, M.: Large deviation principle for a stochastic heat equation with spatially correlated noise. Electronic. J. Prob., 8(12), 1-39 (2003).
  • 9Xi, F.: Invariant measure for the Markov process corresponding to a PDE system. Acta Mathematica Sinica, English Series, 21(3), 457-464 (2005).
  • 10Sowers, R.: Large deviations for a reaction-diffusion equation with non-Gaussian perturbations. Ann. Prob., 1(20), 504-537 (1992).

共引文献4

同被引文献10

  • 1Pazy A. Semigroups of linear operators and applications to partial differential equations [M]. New York: Springer-Verlag, 1983.
  • 2Walsh J. An introduction to stochastic partial differential equations [M ]. New York- Springer, 1986.
  • 3Prato G D, Zabczyk J. Stochastic equations in infinite dimensions, encyclopedia of mathematics and its application [ M]. Cambridge University Press, 1992.
  • 4Szymon P, Jerzy Z. Nonlinear stochastic wave and heat equations[J]. Probab Theory Relat Fields, 2000, 116: 421-443.
  • 5Annikam L. A lax equivalence theorem for stochastic differential equations[J]. J Comput Appl Math, 2010, 234: 3387-3396.
  • 6Marwan I A. Stability analysis of second-order weak schemes for multi-dimensional stochastic differential systems [J]. J Franklin Inst, 2011,348: 1245-1257.
  • 7Jan V N, Mark V, Lutz W. Maximal L' -regularity for stochastic evolution equations[J]. SIAM J Math Anal, 2012, 44 (3) : 1372-1414.
  • 8Jentzen A, Rockner M. Regularity analysis for stochastic partial differential equations with nonlinear muhiplicative trace class noise[J]. J Differ Equat, 2012, 252:114-136.
  • 9Oksendal B. Stochastic differential equations[M]. Berlin: Springer-Verlag, 2010.
  • 10王永进,薄立军,史可华.从超布朗运动到随机偏微分方程[J].数学进展,2010,39(4):385-398. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部