期刊文献+

基于模型填充的混合协同过滤算法 被引量:1

Hybrid Collaborative Filtering Recommendation Algorithm Based on Model Filling
下载PDF
导出
摘要 随着商品与服务等领域电子海量数据的日益膨胀,协同过滤已成为一种新的推荐技术在推荐系统中倍受关注。本文研究分析了协同过滤中存在的数据极端稀疏、相似准确度问题,提出了一种基于模型填充的混合协同过滤算法。实验结果表明,该算法能有效解决用户评分数据的极端稀疏问题,可提高协同过滤的相似准确度。 As the Electronic data of goods and services expanding every day, collaborative filtering (CF) has become a popular and attractive technique in recommender systems. In this paper, a hybrid approach is proposed to solve problems which are challenges of the collaborative filtering, such as data sparsity, accurate of similarities. The experimental results show that our hybrid method can efficiently improve the extreme sparsity of user rating data, and improve the accurate of similarities in some extent.
出处 《微计算机信息》 2011年第11期126-128,共3页 Control & Automation
关键词 推荐系统(RS) 协同过滤 数据稀疏性 相似度 模型填充 recommender system (RS) collaborative filtering (CF) data sparsity Similarity Model Filling
  • 相关文献

参考文献2

二级参考文献12

  • 1邓爱林,左子叶,朱扬勇.基于项目聚类的协同过滤推荐算法[J].小型微型计算机系统,2004,25(9):1665-1670. 被引量:147
  • 2邢春晓,高凤荣,战思南,周立柱.适应用户兴趣变化的协同过滤推荐算法[J].计算机研究与发展,2007,44(2):296-301. 被引量:148
  • 3SARWAR B M, KARYPIS G, KONSTAN J A, et al. Application of dimensionality reduction in recommender system - A case study[ C/ OL]. [2009 - 01 - 01 ]. http://robotics. stanford. edu/- ronnyk/ WEBKDD2000/papers/sarwar. pdf.
  • 4CHICKERING D, HECHERMAN D. Efficient approximations for the marginal likelihood of Bayesian networks with hidden variahles [J]. Machine Learning, 1997,29(2/3):181-212.
  • 5WOLF J, AGGARWAL C, WU K-L, et al. Horting hatches an egg: A new graph-theoretic approach to collaborative filtering[ C]// Proceedings of the ACM SIGMOD International Conference on Knowledge Discovery and Data Mining. San Diego: ACM Press, 1999:201 -212.
  • 6SARWAR B, KARYPIS G, KONSTAN J, et al. Analysis of recommendation algorithms for E-commerce[ C] // Proceedings of the ACM Conference on Electronic Commerce. New York: ACM Press, 2000: 158 - 167.
  • 7SARWAR B, KARYPIS G, KONSTAN J, et al. item-based collaborative filtering recommendalion algorithms[ C]// Proceedings of the 10th International Conference on World Wide Web. New York: ACM Press, 2001 : 285 - 295.
  • 8韩胜娟.SPSS聚类分析中数据无量纲化方法比较[J].科技广场,2008(3):229-231. 被引量:105
  • 9陈孟建.电子商务系统中协同过滤推荐算法研究[J].商场现代化,2008(14):137-139. 被引量:4
  • 10郭艳红,邓贵仕,雒春雨.基于信任因子的协同过滤推荐算法[J].计算机工程,2008,34(20):1-3. 被引量:17

共引文献12

同被引文献18

  • 1邹芳红.Web数据挖掘与个性化搜索引擎综述[J].计算机与现代化,2007(8):44-47. 被引量:5
  • 2Liu B. Web数据挖掘.北京:清华大学出版社,2013:384-422.
  • 3Borges J, Levene M. Data Mining: Concepts and Technique Proc. of Workshop Web Usage Analysis and User Profilin~ San Diego. 2000. 31-36.
  • 4Konstan JA, Miller BN, Maltz D, Herlocker JL, Gordon LR, Riedl J. Grouplens: Applying collaborative filtering to usenet news. Communications of the ACM, 1997, 40(3): 77-87.
  • 5Stead WILL, Rosenstein M, Fumas G Recommending and evaluating choices in a virtual community of use. Proc. of the S|GCHI Conference on Human Factors in Computing Systems. ACM 1995. 194-201.
  • 6Shardanand U, Maes P. Social information filtering: Algorithms for automating "word of mouth". Proc. of the SIGCHI Conference on Human Factors in Computing Systems. ACM. 1995. 210-217.
  • 7Goldberg K, Roeder T, Gupta D, Perkins C. Eigentaste: A constant time collaborative filtering algorithm. Information Retrieval, 2001, 4(2): 133-151.
  • 8孟凡荣,施蕾,胡继成.数据挖掘中分类技术的研究[J].计算机与现代化,2008(3):29-31. 被引量:6
  • 9陶小红.Web数据挖掘在智能选课系统中的应用研究[J].办公自动化(综合月刊),2010(1):27-29. 被引量:2
  • 10王景波,郑丽英.混合推荐技术在Web挖掘中的研究[J].科技信息,2010(33). 被引量:1

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部