期刊文献+

CUDA架构下大规模稠密线性方程组的并行求解 被引量:6

Parallel algorithm for solving large-scale dense linear system on CUDA
下载PDF
导出
摘要 在Gauss-Jordan消去法的基础上,给出了一种适应于CUDA架构的改进Gauss-Jordan消去并行算法。通过分析该方法的处理过程以及CUDA架构的相应限制,在CUDA的grid-block-thread三层组织结构的基础上,从算法构造的角度提出了grid-strip-group-block-thread五层结构,给出了基础行以及全局基础行等概念,并构建了适应于CUDA架构的Gauss-Jordan消去法的并行版本,在最高维数为4000维的大规模稠密线性方程组的算例求解上与串行Gauss-Jordan消去法进行了比较,实验结果表明,该算法能够充分利用GPU的硬件特性,有效地降低了大规模稠密线性方程组的求解时间。 A parallel improved version of the Gauss-Jordan elimination algorithm for solving large-scale dense linear system on CUDA is proposed in this paper.After analyzing the procedure of Gauss-Jordan elimination algorithm and the constraints of CUDA, it gives a new logical organization of "grid-strip-group-block-thread" and the concepts of "based line" and "global based line" ,based on which the parallel version of the Gauss-Jordan elimination algorithm on CUDA is proposed.The numerical experiment of test instances with max size 4 000 shows that the algorithm can utilize the advantage of the GPU and decrease the computational time for the large-scale dense linear system effectively.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第32期27-30,共4页 Computer Engineering and Applications
基金 哈尔滨市科技创新人才研究专项资金(No.2008RFQXG054)
关键词 计算统一设备架构(CUDA) 并行算法 改进Gauss-Jordan消去法 大规模稠密线性方程组 Compute Unified Device Architecture(CUDA) parallel algorithm improved Gauss-Jordan elimination algorithm large-scale dense linear system
  • 相关文献

参考文献5

二级参考文献16

  • 1吴恩华,柳有权.基于图形处理器(GPU)的通用计算[J].计算机辅助设计与图形学学报,2004,16(5):601-612. 被引量:226
  • 2Barrachina S, Castillo M, Igual F D,et al. Solving Dense Linear Systems on Graphics Proeessors[C]//Proc of Euro-Par, 2008 : 739-748.
  • 3Liu W, Schmidt B, Voss G, et al. Molecular Dynamics Simulations on Commodity GPUs with CUDAEC] ffProc of Int'l Conf on High Performance Computing, 2007 : 185-196.
  • 4Scheuermann T, Hensley J. Efficient Histogram Generation Using Scattering on GPUs[C]//Proc of the 2007 Symp on Interactive 3D Graphics and Games, 2007:33-37.
  • 5Yao Z H, Yuan M W. Computational Methods in Engineering &Science[C]//Proc of Enhancement and Promotion of Computational Methods in Engineering and Science X, 2006: 21- 23.
  • 6NVIDIA. CUDA Programming Guide 2. 1[EB/OL]. [-2009- 05-06]. http: /// developer, download, nvidia, com/compute/ cuda/2 _ 1/toolkit/do-cs/NVIDIA _ CUDA _ Programming _ Guide 2. 1. pdf.
  • 7AMD Steam[EB/OL]. [2009-04-10]. http://www, amd. com/stream.
  • 8Buatois L, Caumon G, Levy B. Concurrent Number Cruncher: An Efficient Sparse Linear Solver on the GPU[C]//Proc of the High-Performance Computation Conf,2007.
  • 9Bell N, Garland M. Efficient Sparse Matrix-Vector Multiplication on CUDA[R]. NVIDIA Technical Report NVR-2008- 004,2008.
  • 10Iterative Method [ EB/OL]. [ 2009-04-11 ]. http:// baike. baidu, com/view/649495, htm.

共引文献141

同被引文献43

引证文献6

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部