期刊文献+

非线性多维时间序列模式分类的新方法 被引量:2

Novel method for patterns classification of nonlinear multidimensional time series
下载PDF
导出
摘要 多变量非线性时间序列的模式分类是在工业过程领域广泛存在的问题,结合流形学习和支持向量分类机的特点,提出了解决该类问题的一个新方法。该方法应用核化流形学习算法K-Isomap,将高维非线性时间序列映射到低维特征空间实现维数约减,在低维特征空间中采用支持向量机设计分类器实现非线性时间序列的模式分类,该方法充分利用核化流形学习的特点,得到了较好的模型性能。应用该方法对Tennessee Eastman(TE)过程的故障分类进行了实验分析,结果表明该方法的有效性。 Pattern classification from nonlinear multivariate time series is an important problem in process engineering.This paper introduces a generic approach to detect patterns and identify their class incorporating manifold learning and support vector classifier.K-Isomap,a kernelized manifold learning algorithm,is employed to project multidimensional nonlinear time series onto low-dimensional feature space and realize nonlinear dimensionality reduction.Pattern classifier is designed to identify the pattern of nonlinear time series based on support vector machines in low-dimensional feature space.This method takes the advantage of the kernelized manifold learning algorithm and obtains better performance.Experimental results on Tennessee Eastman(TE) process demonstrate the validity and effectiveness of the proposed method.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第32期128-131,共4页 Computer Engineering and Applications
基金 国家自然科学基金No.60835002 国家博士后科学基金(No.20090460328)~~
关键词 非线性时间序列 K-Isomap 支持向量机 模式分类 TE过程 nonlinear time series K-Isomap support vector machines patterns classification Tennessee Eastman(TE) process
  • 相关文献

参考文献20

  • 1Myers C, Rabiner L, Roseneberg A.Performance tradeoffs in dy- namic time warping algorithms for isolated word recognition[J]. IEEE Transactions on Acoustics Speech Signal Process, 1980,28(6):623-635.
  • 2Abou-Moustafa K T, Suen C Y, Cheriet M.A generative-discriminative hybrid for sequential data classification[C]/Raroceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing,Montreal,Canada,2004: 805-808.
  • 3Jolliffe I T.Principal component analysis[M].New York:Springer, 1986.
  • 4Comon P.Independent component analysis: a new concept?[J].Signal Processing, 1994,36 (3) : 287-314.
  • 5Cox T,Cox M.Multidimensional scaling[M].London:Chapman & Hall, 1994.
  • 6Tenenbaurn J B, de Silva V, Langford J C.A global geometric framework for nonlinear dimensionality reduction[J].Science, 2000,290 (5500) : 2319-2323.
  • 7Roweis S T, Saul L K.Nonlinear dimensionality reduction by local . linear embedding[J].Science, 2000,290 (5500) : 2323-2326.
  • 8Vlachos M,Domeniconi C, Gunopulos D, et al.Non-linear dimen- sionality reduction techniques for classification and visualization[C]// Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Edmonton, Canada, 2002 : 645-651.
  • 9Saul L K, Roweis S T.Think globally, fit locally:unsupervised learning of low dimensional manifolds[J].Joumal of Machine Learning Research, 2003,4:119-155.
  • 10Choi H, Choi S.Robust kemel isomap[J].Pattem Recognition, 2007,40 (3) : 853-862.

同被引文献30

引证文献2

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部