期刊文献+

利用最近邻信息快速分类多标签数据 被引量:3

Fast classify multi-label data by using information of nearest neighbors
下载PDF
导出
摘要 为克服ML-KNN在分类效率方面的局限性,提出了一种基于KNN的快速多标签数据分类算法FKMC,利用待分类实例的k个最近邻的局部信息进行排序分类。从已分类数据实例集中选择待分类数据实例的k个最近邻;根据每个最近邻拥有的标签数和每个标签归属的最近邻数对待分类实例进行排序分类。仿真结果表明,最近邻的选择方法对分类器性能有显著的影响;在分类效果上FKMC与ML-KNN相当,有时甚至优于后者;而在分类效率上FKMC则显著优于ML-KNN。 For overcoming the limitation of ML-KNN on the aspect of categorization efficiency, a fast KNN-based multi-label categorization algorithm named FKMC is proposed, where the local information of the k-nearest neighbors of those unclassified data instances is used to do ranking categorization on these instances.To an unclassified instance, its k-nearest neighbors are selected from the classified instances set in the first step, and then ranking categorization on it is done in light of the number of labels assigned to each nearest neighbor and the number of the nearest neighbors owning each label.Simulation results show that the method of selecting the nearest neighbors affects the performance of a classifier obviously.The categorization effect of FKMC is similar with that of ML-KNN in most cases, and sometimes the former is even better.While on the aspect of categorization efficiency,FKMC outperforms ML-KNN remarkably.
作者 乔健 田庆
出处 《计算机工程与应用》 CSCD 北大核心 2011年第32期138-140,190,共4页 Computer Engineering and Applications
基金 教育部人文社科基金(No.09YJAZH072)
关键词 最近邻 快速分类 多标签数据 快速多标签数据分类算法(FKMC) nearest neighbors fast classifying multi-label data Fast K-nearest neighbors based Multi-label Categorization(FKMC)
  • 相关文献

参考文献10

  • 1Sebastiani F.Machine learning in automated text categorization[J]. ACM Computing Surveys, 2002,34 ( 1 ) : 1-47.
  • 2Tsoumakas G, Katakis I.Multi-label classification: an overview[J]. International Journal of Data Warehousing and Mining, 2007, 3: 1-13.
  • 3Oliveira E, Ciarelli P, Souza A, et al.Using a probabilistic neural network for a large multi-label problem[C]//Proc of the 10th Brazilian Symposium on Neural Networks,Washington DC, USA, 2008:195-200.
  • 4Vens C, Struyf J, Schietgat L, et al.Decision frees for hierarchical multi-label classification[J].Machine Learning,2008,73(2):185-214.
  • 5Wieczorkowska A, Synak P, Rag Z.Multi-label classification of emotions in music[C]//Proc Intelligent Information Processingand Web Mining,2006,35:307-315.
  • 6Zhang M, Zhou Z.ML-KNN: a lazy learning approach to multi-label leaming[J].Pattem Recognition,2007,40(7) :2038-2048.
  • 7广凯,潘金贵.一种基于向量夹角的k近邻多标记文本分类算法[J].计算机科学,2008,35(4):205-206. 被引量:6
  • 8Salzberg S.Distance metrics for instance-based learning[C]//LNCS 542,2006 : 399-408.
  • 9Montanari U.A method for obtaining skeletons using a quasi- euclidean distance[J].Journal of the ACM, 1968,15(4) :600-624.
  • 10Inderjit S, Dharmendra S.Concept decompositons for large sparse text data using clustering[J].Machine Learning, 2001,42 (1/2) : 143-175.

二级参考文献1

共引文献5

同被引文献37

  • 1夏天,樊孝忠,刘林.利用JNI实现ICTCLAS系统的Java调用[J].计算机应用,2004,24(B12):177-178. 被引量:24
  • 2夏天.汉语词语语义相似度计算研究[J].计算机工程,2007,33(6):191-194. 被引量:63
  • 3董振东 董强.知网简介[EB/OL].http://www.keenage.com/.,1999.
  • 4刘群 李素建.基于《知网》的词汇语义相似度计算.中文计算语言学,2002,7(2):59-76.
  • 5周志华,杨强.机器学习及其应用[M].北京:清华大学出版社,2011.
  • 6Kim Younghoon, Shim Kyuseok. TWITOBI: a recom mendation system for twitter using probabilistic mod eling[C]//IEEE llth International Conference on Da ta Mining. Vancouver,2011:340-349.
  • 7Huang Z, Zeng D D, Chen H. Analyzing consumer- product graphs: empirical findings and applications in recommender systems [J]. Manage Sci, 2007, 53 (7) :1146.
  • 8Xia Ning,George K. SLIM: sparse linear methods for Top-N recommender systems[C]//IEEE 11th Inter- national Conference on Data Mining. Vancouver, 2011 : 497-506.
  • 9Hariharan B, Zelnik-Manor L, Vishwanathan S V N, et al. Large scale max-margin multi-label classification with priors [C3//Proceedings of the 27th International Conference on Machine Learning. 2010:423-430.
  • 10Dembczynski K, Cheng Weiwei, Hllllermeier E. Bayes op- timal muhilabel classification via probabilistic classifier chains[ C]//Proceedings of the 27th International Confer- ence on Machine Learning. 2010:279-286.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部