期刊文献+

CoClique:从生物网络中挖掘频繁关联相似模式

CoClique:mining frequent correlated-quasi-cliques from biology network
下载PDF
导出
摘要 以前的许多研究已经充证明了挖掘频繁子图是非常有意义的。从单个图中很难挖掘出一些潜在的很有意义的频繁模式,因而应该从多个图中去挖掘频繁模式。以前的研究诸如相似模式(Quasi-Clique)不能解决图中的中心问题。介绍了一个新的概念关联相似模式(Correlated-Quasi-Clique)同时也介绍了一个有效的算法,CoClique,该算法可以解决挖掘过程中所存在的中心问题并且提高挖掘频繁关联相似模式的效率。同时,也提出了一些有效的剪枝策略来缩小搜索空间。在真实数据集上的实验分析结果证明了所提出的算法比以前的算法更有效,结果更好。 Many of the previous studies show convincing arguments that mining frequent subgraphs is especially useful.Many hidden frequent patterns which are very interesting can not be found by mining single graph.Therefore,it needs mine frequent patterns from multiple graphs.Previous studies as quasi-clique have little success with the hub problem.This paper introduces a new conception correlated-quasi-clique and develops a novel algorithm, CoClique, to address the hub problem and improve the efficiency of frequent correlated-quasi-cliques mining.Meanwhile, it exploits several effective techniques to prune the search space.An extensive experimental evaluation on real databases demonstrates that the algorithm outperforms previous methods.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第32期155-158,220,共5页 Computer Engineering and Applications
基金 国家自然科学基金No.60703105 陕西省自然科学基金(No.2007F27)~~
关键词 图挖掘 中心问题 相似模式 关联相似模式 graph mining hub problem quasi-clique correlated-quasi-clique
  • 相关文献

参考文献10

  • 1Jiang D, Pei J.Mining frequent cross-graph quasi-cliques[J].ACM Trans Knowl Diseov Data,2009,2(4).
  • 2Abello J, Resende M, Sudarsky S.Massive quasi-clique detection[C]/~ Proceedings of the Latin-American Symposium on Theoretical Intormatics, 2002: 598-612.
  • 3Matsuda M, Ishihara T, Hashimoto A.Classifying molecular se- quences using a linkage graph with their pairwise similarities[J]. Theor Comput Sci, 1999,210(2) :305-325.
  • 4Zeng Z,Wang J,Zhou L,et al.Out-of-core coherent closed quasi- clique mining from large dense graph databases[J].ACM Trans Datab Syst,2007,32(2).
  • 5Zaki M, Hsiao C.CHARM: an efficient algorithm for closed itemset mining[C]//Proc SIAM Int'l Conf on Data Mining.Ar- lington: SIAM, 2002:12-28.
  • 6Yan X,Han J, Afshar R.CloSpan:mining closed sequential patterns in large datasets [J].Data Mining, 2003,16 ( 5 ) : 40-45.
  • 7Horvath T,Ramon J, Wrobel S.Frequent subgraph mining in out- erplanar graphs[C]//Proceedings of the 12th ACM SIGKDD In- ternational Conference on Knowledge Discovery and Data Mining, Philadelphia, 2006:197-206.
  • 8Przulj N, Wigle D A, Jurisica I.Functional topology in a net- work of protein interactions[J].Bioinformatics,2004,20:340-348.
  • 9Lee H,Hsu A, Sajdak J,et a/.Coexpression analysis ot human genes across many microarray data sets[J].Genome Resear, 2004,14:1085-1094.
  • 10Moreau Y, Aerts S, Moor B, et al.Comparison and metaanalysis of microarray data: from the bench to the computer desk[J]. Trends Genetics,2003,19: 570-577.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部