期刊文献+

基于边缘方向分布和粒子滤波的视频目标跟踪

Video object tracking based on edge orientation distribution and particle filter
下载PDF
导出
摘要 针对背景复杂的非线性视频运动目标,提出了一种基于边缘方向分布和粒子滤波技术相结合的跟踪方法。该方法利用边缘算子获取目标区域边缘方向图,采用高斯核函数建立目标区域边缘方向分布,结合粒子滤波理论,实现对非线性视频运动目标的有效跟踪。计算机仿真结果表明,该方法可对非线性、非高斯的运动目标进行有效的跟踪,且在跟踪目标区域与背景颜色接近,背景复杂的场景下,与采用灰度特征的方法相比,有较强的鲁棒性和较高的跟踪精度。 This paper presents a new target tracking algorithm based on the particle filter and the edge orientation distribution to track video moving targets whose trajectoly is nonlinear and in complicated backgrounds.The edge orientation image in target area is obtained by edge operator and the edge orientation distribution is established by Gaussian kernel.The edge orientation distribution is used as the characteristic to fuse with the particle filter to complete tracking for non-linear video moving target.The computer simulations show that the presented method can track the non-linear and non-Gaussian moving target in the complicated backgrounds effectively,and has a better performance compared with the method based on gray distribution.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第32期204-207,227,共5页 Computer Engineering and Applications
基金 国家自然科学基金No.10974128 陕西省自然科学基金(No.2006F47)~~
关键词 视频目标跟踪 边缘方向图 边缘方向分布 粒子滤波 video target tracking edge orientation image edge orientation distribution particle filter
  • 相关文献

参考文献15

  • 1杨暤昀,张桂林.一种新的相关跟踪算法的设计与实现[J].红外与毫米波学报,2000,19(5):377-380. 被引量:26
  • 2Matthews l,lshikawa T,Baker S.The template update problem[J]. IEEE Transactions on Pattern Analysis and Machine Intelli- gence,2004,11 (6) :810-815.
  • 3Kalman R E.A new approach to linear filtering and prediction problems[J].Transactions of the ASME-Joumal of Basic Engi- neering, 1960,82: 35-45.
  • 4Juliann S J.A new extension of the Kalman filter to nonlinear systems[C]//Proc SPIE, 1997,3068:182-193.
  • 5Bar-Shalom Y,Fortmann T.Tracking and data association[M].[S.l.]: Academic Press, 1988:160-189.
  • 6Weng S K, Kuo C M, Tu S K.Video object tracking using adaptive Kalman filter[J].Visual Communication & Image Representation, 2006,17(6) : 1190-1208.
  • 7朱安福,景占荣,羊彦,张安学.UKF及其在目标跟踪中的应用[J].火力与指挥控制,2008,33(8):27-29. 被引量:12
  • 8张苗辉,杨一平,刘先省.基于UKF的机动目标跟踪算法[J].火力与指挥控制,2007,32(8):37-39. 被引量:6
  • 9Comaniciu D,Meer P.Mean shift:a robust approach toward feature space analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002,24 ( 5 ) : 603 -619.
  • 10Arulampalam M S, Maskell S, Gordon N.A tutorial on particle filter for online nonlinear/non-Gaussian bayesian tracking[J]. IEEE Transactions on Signal Processing, 2002,50 (2) : 174-188.

二级参考文献55

共引文献196

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部