期刊文献+

Dehn Twists and Products of Mapping Classes of Riemann Surfaces with One Puncture

Dehn Twists and Products of Mapping Classes of Riemann Surfaces with One Puncture
原文传递
导出
摘要 Let S be a Riemann surface that contains one puncture x. Let be the collection of simple closed geodesics on S, and let denote the set of mapping classes on S isotopic to the identity on S U {x}. Denote by tc the positive Dehn twist about a curve c ∈ . In this paper, the author studies the products of forms (tb^-m o t^na) o f^k, where a, b ∈ and f ∈ . It is easy to see that if a = b or a, b are boundary components of an x-punctured cylinder on S, then one may find an element f ∈ such that the sequence (tb^-m o t^na) ofk contains infinitely many powers of Dehn twists. The author shows that the converse statement remains true, that is, if the sequence (tb^-m o t^na) o f^k contains infinitely many powers of Dehn twists, then a, b must be the boundary components of an x-punctured cylinder on S and f is a power of the spin map tb^-1 o ta.
作者 Chaohui ZHANG
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2011年第6期885-894,共10页 数学年刊(B辑英文版)
关键词 Riemann surfaces Simple closed geodesics Dehn twists PRODUCTS Bers isomorphisms 黎曼曲面 穿刺 产品 映射 MOT 闭测地线 结核病 同位素
  • 相关文献

参考文献15

  • 1Beardon, A., The Geometry of Discrete Groups, Springer-Verlag, New York, Heidelberg, Berlin, 1983.
  • 2Bers, L., Fiber spaces over Teichmiiller spaces, Acta Math., 130, 1973, 89-126.
  • 3Bers, L., An extremal problem for quasiconformal mappings and a theorem by Thurston, Acta Math., 141, 1978, 73-98.
  • 4Birman, J. S., Braids, Links and Mapping Class Groups, Ann. of Math. Studies, No. 82, Princeton University Press, Princeton, 1974.
  • 5Dehn, M.~ Die druppe der abbildungsklassen, Acta Math., 69 1938, 135-206.
  • 6Fathi, A., Dehn twists and pseudo-Anosov diffeomorphisms, Invent. Math., 87, 1987, 129-152.
  • 7Kra, I., On the Nielsen-Thurston-Bers type of some self-maps of Riemann surfaces, Acta Math., 146, 1981, 231-270.
  • 8Lickorish, W. B. R., A representation of orientable, combinatorial 3-manifolds, Ann. of Math., 76, 1962, 531-540.
  • 9Long, D. D. and Morton, H., Hyperbolic 3-manifolds and surface homeomorphism, Topology, 25(4), 1986, 575-583.
  • 10Nag, S., Non-geodesic discs embedded in Teichm/iller spaces, Amer. J. Math., 104, 1982, 339-408.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部