期刊文献+

综合利用钛铁矿制备二氧化钛、钛酸锂和磷酸铁锂 被引量:15

Preparation of titanium dioxide,lithium titanium oxide and lithium iron phosphate from ilmenite
下载PDF
导出
摘要 以钛铁矿为原料,经机械活化-盐酸浸出得到水解钛渣和富铁浸出液;用H2O2将水解钛渣中的Ti配位溶出,得到配位浸出液,并以其为反应物制备纳米级片状的过氧钛化合物;该过氧钛化合物经洗涤、煅烧制备得到纳米级片状的TiO2,其纯度高达99.31%(质量分数)。将过氧钛化合物与Li2CO3混合,球磨后煅烧合成性能优良的锂离子电池负极材料Li4Ti5O12。以富铁浸出液为原料,经选择性沉淀制备含少量Al和Ti的FePO4.xH2O,并以其为前驱体制备了Al-Ti掺杂的LiFePO4。该LiFePO4在1C和2C倍率下的首次放电比容量分别达151.3和140.1(mA.h)/g,循环100次之后容量无衰减。该方法也可用于钛白粉副产品硫酸亚铁的回收利用,制备性能优异的LiFePO4。 Titanium hydrolysate and iron-rich lixivium were obtained from the ilmenite by mechanical activation and hydrochloric acid leaching.By using H2O2 as a coordination agent,titanium was leached from the titanium-slag and a coordination lixivium was obtained.A nano-sized platelike peroxo-titania compound was prepared by heating the coordination lixivium.The peroxo-titania compound was washed and sintered,then a nano-sized platelike TiO2(99.31%,mass fraction) was obtained.Li4Ti5O12 was synthesized by sintering the mixture of peroxo-titania compound and Li2CO3,the sample shows a good electrochemical performance as an anode material for the lithium-ion batteries.A selective precipitation method was used to synthesize FePO4·xH2O precursor from the iron-rich lixivium.The Ti-Al doped LiFePO4 was prepared using the FePO4·xH2O as the starting material.The as-prepared LiFePO4 exhibits a first discharge capacity of 151.3 and 140.1(mA·h)/g,respectively,and shows no capacity fading after 100 cycles.Also,this method was used to synthesize the high-performance LiFePO4 from the ferrous sulfate waste slag produced by the titanium dioxide industry.
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2011年第10期2697-2708,共12页 The Chinese Journal of Nonferrous Metals
基金 国家重点基础研究发展计划资助项目(2007CB613607) 湖南省科技重大专项资助项目(2009FJ1002)
关键词 钛铁矿 二氧化钛 正极材料 负极材料 磷酸铁锂 钛酸锂 ilmenite titanium dioxide cathode material anode material lithium iron phosphate lithium titanium oxide
  • 相关文献

参考文献44

  • 1OHZUKU T, UEDA A, YAMAMOTO N. Zero-strain insertion material of Li[LiL/3Ti5/3]O4 for rechargeable lithium cells[J]. J Electrochem Soc, 1995, 142(5): 1431-1435.
  • 2ZAGHIB K, SIMONEAU M, ARMAND M, GAUTHIER M. Electrochemical study of Li4Ti5O12 as negative electrode for Li-ion polymer rechargeable batteries[J]. J Power Sources, 1999, 81/82: 300-305.
  • 3PADHI A K, NANJUNDASWAMY K S, GOODENOUGH G B Phospho-olivines as positive-electrode materials for rechargeable lithium batteries[J]. J Electrochem Soc, 1997, 144(4): 1188-1194.
  • 4KONAROVA M, TANIGUCHI I. Synthesis of carbon-coated LiFePO4 nanoparticles with high rate performance in lithium secondary batteries[J]. J Power Sources, 2010, 195(11): 3661-3667.
  • 5WOLFENST1NE J, LEE U, ALLEN J L. Electrical conductivity and rate-capability of Li4TisO~2 as a function of heat-treatment atmosphere[J]. J Power Sources, 2006, 154(1): 287-289.
  • 6GAO J, JIANG C, YING J, WAN C. Preparation and characterization of high-density spherical Li4Ti5Oi2 anode material for lithium secondary batteries[J]. J Power Sources,2006, 155(2): 364-367.
  • 7JU S H, KANG Y C. Characteristics of spherical-shaped Li4Ti5O2 anode powders prepared by spray pyrolysis[J]. J Phys Chem Solids, 2009, 70(1): 40-44.
  • 8NISHIMURA S I, KOBAYASHI G, OHOYAMA K, KANNO R, YASHIMA M, YAMADA A. Experimental visualization of lithium diffusion in LixFePOa[J]. Nat Mater, 2008, 7:707-711.
  • 9HU Y, DOEFF M M, KOSTECKI R, FINONES R. Electrochemical performance of sol-gel synthesized LiFePO4 in lithium batteries[J]. J Electrochem Soc, 2004, 151: A1279-A1285.
  • 10WANG Y, WANG J, YANG J, NULI Y. High-rate LiFePO4 electrode material synthesized by a novel route from FePO4·4H20[J]. Adv Funct Mater, 2006, 16:2135-2140.

二级参考文献75

共引文献79

同被引文献147

引证文献15

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部